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Chapter 10: 

 Kernel Density Interpolation 

 
Introduction 
 
 In this chapter, we discuss tools aimed at interpolating incidents, using the kernel density 
approach. Kernel Density Interpolation (sometimes called Kernel Density Estimation) is a 
technique for generalizing incident locations to an entire area.  Whereas the spatial distribution 
and hot spot statistics provide statistical summaries for the data incidents themselves, 
interpolation techniques generalize those data incidents to the entire region.  In particular, they 
provide density estimates for all parts of a region (i.e., at any location).  The density estimate is 
an intensity variable, a Z-value, that is estimated at a particular location.  Consequently, it can 
be displayed by either surface maps or contour maps that show the intensity at all locations. 
 
 There are many interpolation techniques, such as Kriging, trend surfaces, local regression 
models (e.g., Loess, splines), and Dirichlet tessellations (Anselin, 1992; Cleveland, Grosse & 
Shyu, 1993; Venables & Ripley, 1997).  Most of these require a variable that is being estimated 
as a function of location.  However, kernel density estimation is an interpolation technique that 
is appropriate for individual point locations (Silverman, 1986; Härdle, 1991; Bailey & Gatrell, 
1995; Burt & Barber, 1996; Bowman & Azalini, 1997). 
 

Kernel Density Estimation 
 
 Kernel density estimation involves placing a symmetrical surface over each point, 
evaluating the distance from the point to a reference location based on a mathematical function, 
and summing the value of all the surfaces for that reference location.  This procedure is 
repeated for all reference locations.  It is a technique that was developed in the late 1950s as an 
alternative method for estimating the density of a histogram (Rosenblatt, 1956; Whittle, 1958; 
Parzen, 1962).  A histogram is a graphic representation of a frequency distribution.  A 
continuous variable is divided into intervals of size, s (the interval or bin width), and the number 
of cases in each interval (bin) are counted and displayed as block diagrams. The histogram is 
assumed to represent a smooth, underlying distribution (a density function). However, in order to 
estimate a smooth density function from the histogram, traditionally researchers have linked 
adjacent variable intervals by connecting the midpoints of the intervals with a series of lines 
(Figure 10.1).  
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 Kernel Estimates as an Alternative to Histograms 
 
 Unfortunately, doing this causes three statistical problems (Bowman & Azalini, 1997): 
 

1. Information is discarded because all cases within an interval are assigned to the 
midpoint.  The wider the interval, the greater the information loss. 

 
2. The technique of connecting the midpoints leads to a discontinuous and not 

smooth density function even though the underlying density function is assumed 
to be smooth.  To compensate for this, researchers will reduce the width of the 
interval.  Thus, the density function becomes smoother with smaller interval 
widths, although still not very smooth.  Further, there are limits to this technique 
as the sample size decreases when the bin width gets smaller, eventually 
becoming too small to produce reliable estimates. 

 
3. The technique is dependent on an arbitrarily defined interval size (bin width).  

By making the interval wider, the estimator becomes cruder and, conversely, by 
making the interval narrower, the estimator becomes finer. However, the 
underlying density distribution is assumed to be smooth and continuous and not 
dependent on the interval size of a histogram. 

 
 To handle this problem, Rosenblatt (1956), Whittle (1958) and Parzen (1962) developed 
the kernel density method in order to avoid the first two of these difficulties; the bin width issue 
still remains.  What they did was to place a smooth kernel function over each point and sum the 
functions for each location on the scale. Figure 10.2 illustrates the process with five point 
locations.  As seen, over each location, a symmetrical kernel function is placed; by symmetrical 
is meant that is falls off with distance from each point at an equal rate in both directions around 
each point.  In this case, it is a normal distribution, but other types of symmetrical distribution 
have been used.  The underlying density distribution is estimated by summing the individual 
kernel functions at all locations to produce a smooth cumulative density function.  Notice that 
the functions are summed at every point along the scale and not just at the point locations.  The 
advantages of this are that, first, each point contributes equally to the density surface and, 
second, the resulting density function is continuous at all points along the scale. 
 
 The third problem mentioned above, interval size, still remains since the width of the 
kernel function can be varied. In the kernel density literature, this is called bandwidth and refers 
essentially to the width of the kernel.  Figure 10.3 shows a kernel with a narrow bandwidth 
placed over the same five points while Figure 10.4 shows a kernel with a wider bandwidth 
placed over the points.  Clearly, the smoothness of the resulting density function is a result of 
the bandwidth size. 
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Figure 10.3:
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Figure 10.4:
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 Kernel Functions 
 
 There are a number of different kernel functions that have been used in applications.  
Figure 10.5 illustrates five different kernel functions that are available in CrimeStat.     
 
 The first is the normal distribution and is the most commonly used (Kelsall & Diggle, 
1995a).  It has the following functional form: 
 

 ݃ሺ݆ሻ ൌ ∑ ൥ܭ ௜ܹܫ௜
ଵ

௛మଶగ
݁ି

೏೔ೕ
మ

మ೓మ൩ே
௜ୀଵ         (10.1) 

 
where g(xj) is the density of cell ݆, dij is the distance between cell	݆	and an incident location,	݅, h 
is the standard deviation of the normal distribution (the bandwidth), K is a constant, Wi is a 
weight at the point location and Ii is an intensity at the point location. This function extends to 
infinity in all directions and, thus, will be applied to any location in the region. In CrimeStat, the 
constant K is initially set to 1 and then re-scaled to ensure that either the densities or probabilities 
sum to their appropriate values (i.e., N for densities and 1.00 for probabilities). 
 
 In other words, the density of cell	݆	is the sum over all incidents of a distance function 
where the function is the normal distribution.  Each cell, in turn, is evaluated with this function 
and the result is a density estimate for every cell in the reference grid. 
 
 In CrimeStat, there are four alternative kernel functions that can be used, all of which 
have a circumscribed bandwidth (search area) unlike the normal distribution. The quartic 
function is applied to a limited area around each incident point defined by the radius, h.  It falls 
off gradually with distance until the bandwidth radius is reached.  Its functional form is: 
 
 1. Outside the specified bandwidth, h: 
 
 ݃ሺ݆ሻ ൌ 0           (10.2)  
 
 2. Within the specified bandwidth, h: 
 

 ݃ሺ݆ሻ ൌ ∑ ൤ܭ ௜ܹܫ௜
ଷ

௛మଶగ
ሺ1 െ

ௗ೔ೕ
మ

௛మ
ሻଶ൨

ெೕ

௜ୀଵ         (10.3)  

 
where g(j) is the density of cell	݆, dij is the distance between cell	݆	and an incident location,	݅, h is 
the radius of the search area (the bandwidth) , K is a constant, Wi is a weight at the point location, 
and Ii is an intensity at the point location. The summation is for the incidents that are within the 
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bandwidth.  Thus, each cell,	݆, has a different number of incidents that fall within the bandwidth 
search area, Mj.  In CrimeStat, the constant K is initially set to 1 and then re-scaled to ensure 
that either the densities or probabilities sum to their appropriate values (i.e., N for densities and 
1.00 for probabilities). 
 
 The triangular (or conical) distribution falls off evenly with distance, in a linear 
relationship. It also has a circumscribed radius and is, therefore, applied to a limited area around 
each incident point, h.  Compared to the quartic function, it decays more rapidly.  Its 
functional form is: 
 
 1. Outside the specified bandwidth, h: 
 
 ݃ሺ݆ሻ ൌ 0           (10.4)  
 
 2. Within the specified bandwidth, h: 
 

 ݃ሺ݆ሻ ൌ ∑ ሾ ௜ܹܫ௜ሺܭ െ ௄

௛

ெೕ

௜ୀଵ ሻ݀௜௝ሿ        (10.5) 

 
where g(xj) is the density of cell	݆, dij is the distance between cell	݆	and an incident location,	݅, h 
is the radius of the search area (the bandwidth) , K is a constant, Wi is a weight at the point 
location, and Ii is an intensity at the point location. The summation is for the incidents that are 
within the bandwidth.  Thus, each cell,	݆, has a different number of incidents that fall within the 
bandwidth search area, Mj.  In CrimeStat, the constant K is initially set to 0.25 and then 
re-scaled to ensure that either the densities or probabilities sum to their appropriate values (i.e., N 
for densities and 1.00 for probabilities). 

 
 The negative exponential (or peaked) distribution falls off very rapidly with distance up 
to the circumscribed radius.  Its functional form is: 
 

1. Outside the specified bandwidth, h: 
 

 ݃ሺ݆ሻ ൌ 0           (10.6)  
 
 2. Within the specified bandwidth, h: 
 

 ݃ሺ݆ሻ ൌ ∑ ௜ܹܫ௜݁ܭ
஺ௗ೔ೕெೕ

௜ୀଵ          (10.7)  

where g(xj) is the density of cell	݆, dij is the distance between cell	݆	and an incident location,	݅, h 
is the radius of the search area (the bandwidth) , K is a constant, A is an exponent, Wi is a weight 
at the point location, and Ii is an intensity at the point location. The summation is for the 
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incidents that are within the bandwidth.  Thus, each cell,	݆, has a different number of incidents 
that fall within the bandwidth search area, Mj.  In CrimeStat, A is set to 3 while K is initially set 
to 1 and then re-scaled to ensure that either the densities or probabilities sum to their appropriate 
values (i.e., N for densities and 1.00 for probabilities). 
 
 Finally, the uniform distribution weights all points within the circle equally.  Its 
functional form is: 
 

1. Outside the specified bandwidth, h: 
 
 ݃ሺ݆ሻ ൌ 0           (10.8)  
 

2. Within the specified bandwidth, h:   
 

 ݃ሺ݆ሻ ൌ ∑ ௜ܹܫ௜ܭ
ெೕ

௜ୀଵ           (10.9) 

 
where g(xj) is the density of cell	݆, K is a constant, Wi is a weight at the point location, and Ii is an 
intensity at the point location. The summation is for the incidents that are within the bandwidth.  
Thus, each cell,	݆, has a different number of incidents that fall within the bandwidth search area, 
Mj.  Initially, K is set to 0.1 but then re-scaled to ensure that either the densities or probabilities 
sum to their appropriate values (i.e., N for densities and 1.00 for probabilities). 
 
 Kernel Parameters 
 
 The user can select these five different kernel functions to interpolate the data to the grid 
cells.  They produce subtle differences in the shape of the interpolated surface or contour.  The 
normal distribution weighs all points in the study area, though near points are weighted more 
highly than distant points.  The other four techniques use a circumscribed circle around the grid 
cell.  The uniform distribution weighs all points within the circle equally.  The quartic function 
weighs near points more than far points, but the fall off is gradual. The triangular function 
weighs near points more than far points within the circle, but the fall off is more rapid.  Finally, 
the negative exponential weighs near points much more highly than far points within the circle 
and the decay is very rapid. 
 
 The use of any of one of these depends on how much the user wants to weigh near points 
relative to far points.  Using a kernel function which has a big difference in the weights of near 
versus far points (e.g., the negative exponential or the triangular) tends to produce finer 
variations within the surface than functions which weight more evenly (e.g., the normal 
distribution, the quartic, or the uniform); these latter ones tend to smooth the distribution more. 
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Shape and size of the bandwidth 
 
 However, Silverman (1986) has argued that it does not make that much difference as long 
as the kernel is symmetrical.  There are also edge effects that can occur and there have been 
different proposed solutions to this problem (Venables & Ripley, 1997). 
 
 There have also been variations on the size of the bandwidth with various formulas and 
criteria proposed (Silverman, 1986; Härdle, 1991; Venables & Ripley, 1997).  Generally, 
bandwidth choices fall into either fixed or adaptive (variable) kernels (Kelsall & Diggle, 1995a; 
Bailey & Gatrell, 1995). CrimeStat follows this distinction, which will be explained below.   
 
 Another suggestion is to use the Moran correlogram, which was discussed in Chapter 5, 
to estimate the shape of the weighting function (Cliff & Haggett, 1988; Bailey & Gattrell, 1995).   
This would be appropriate for variables that have weights, such as population or employment.  
The Moran correlogram displays the degree of spatial autocorrelation as a function of distance.   
Whether the autocorrelation falls off quickly or more slowly can be used to select an 
approximate kernel function (e.g., a negative exponential function decays quickly whereas a 
quartic function decays very slowly).  The bandwidth could also be selected by the distance at 
which the Moran correlogram levels off (i.e., approaches the global I value).  This would lead 
to an estimate that minimizes spatial autocorrelation in the data set.  It would be good for 
capturing major trends in the data, but would not be good for identifying local clusters (hot 
spots) since the bandwidth distance would incorporate most of a metropolitan area. 
  

Three-dimensional kernels 
 
 The kernel function can be expanded to more than two dimensions (Härdle, 1991; Bailey 
& Gatrell, 1995; Burt & Barber, 1996; Bowman & Azalini, 1997).  Figure 10.6 shows a 
three-dimensional normal distribution placed over each of five points with the resulting density 
surface being a sum of all five individual surfaces.  Thus, the method is particularly appropriate 
for geographical data, such as crime incident locations.  The method has also been developed to 
relate two or more variables together by applying a kernel estimate to each variable in turn and 
then dividing one by the other to produce a three-dimensional estimate of risk (Kelsall & Diggle, 
1995a; Bowman & Azalini, 1997). 
 
 Significance testing of density estimates is more complicated.  Current techniques tend 
to focus on simulating surfaces under spatially random assumptions (Bowman & Azalini, 1997; 
Kelsall & Diggle, 1995b).  Because of the still experimental nature of the testing, CrimeStat 
does not include any testing of density estimates in this version. 
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 CrimeStat Kernel Density Methods 
 
 CrimeStat has two kernel density interpolation routines. The first applies to a single 
variable while the second to the relationship between two variables.  Both routines have a 
number of options. In addition, kernel density interpolation is used in several other CrimeStat 
routines including journey-to-crime modeling, Bayesian journey-to-crime modeling, and 
Head-Bang interpolation.  Those latter techniques will be discussed in Chapters 11, 13, and 14.  
 
 Figure 10.7 shows the Interpolation I screen in CrimeStat and the two routines that are 
available.  Users indicate their choices by clicking on the tab and menu items.  For either 
technique, it is necessary to have a reference file, which is usually a grid placed over the study 
region (see chapter 3).  The reference file represents the region to which the kernel estimate will 
be generalized. Figure 10.8 illustrates a reference grid over the Baltimore region with 100 
columns and 90 rows. 
 

Single Kernel Density Interpolation 
 
 The single kernel density routine in CrimeStat is applied to a distribution of point 
locations, such as crime incidents.  It can be used with either a primary file or a secondary file; 
the primary file is the default.  For example, the primary file can be the location of motor 
vehicle thefts.  The points can also have a weighting or an associated intensity variable (or 
both).  For example, the points could represent the location of police stations while the weights 
(or intensities) represent the number of calls for service. Again, the user must be careful in 
having both weighting and intensity variables as the routine will use both variables in calculating 
densities, which could lead to double weighting. 
 
 It is necessary to define the appropriate file on the Primary or Secondary file pages. Also, 
it is necessary to define a reference file, either an existing file or one generated by CrimeStat (see 
Chapter 3).  There are other parameters that must be defined. 
 

File to be Interpolated 
 
 First, the user must indicate whether the Primary file or the Secondary file (if used) is to 
be interpolated. 
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Method of Interpolation 
 
 Second, the user must indicate the method of interpolation.  Five types of kernel density 
estimators are used:  
 

1. Normal distribution (bell; default) 
2. Uniform (flat) distribution 
3. Quartic (spherical) distribution  
4. Triangular (conical) distribution 
5. Negative exponential (peaked) distribution 

 
 In our experience, there are advantages to each.  The normal distribution produces an 
estimate over the entire region whereas the other four produce estimates only for the 
circumscribed bandwidth radius.  If the distribution of points is sparse towards the outer parts of 
the region, then the four circumscribed functions will not produce estimates for those areas, 
whereas the normal will.  Conversely, the normal distribution can cause some edge effects to 
occur (e.g., spikes at the edge of the reference grid), particularly if there are many points near 
one of the boundaries of the study area.  The four circumscribed functions will produce less of a 
problem at the edges, although they still can produce some spikes.  Within the four 
circumscribed functions, the uniform and quartic tend to smooth the data more whereas the 
triangular and negative exponential tend to emphasize >peaks= and >valleys=.  The differences 
between these different kernel functions are small, however.  The user should probably start 
with the default normal function and adjust accordingly to how the surface or contour looks. 
 

Choice of Bandwidth 
 
 Third, the user must indicate how bandwidths are to be defined.  There are two types of 
bandwidth for the single kernel density routine, fixed interval or adaptive interval.   
 

Fixed interval 
 
 With a fixed bandwidth, the user must specify the interval to be used and the units of 
measurement (square miles, square nautical miles, square feet, square kilometers, or square 
meters).  Depending on the type of kernel estimate used, this interval has a slightly different 
meaning.  For the normal kernel function, the bandwidth is the standard deviation of the normal 
distribution.  On the other hand, for the uniform, quartic, triangular, or negative exponential 
kernels, the bandwidth is the radius of the search area to be interpolated.  
 
 There are few guidelines for choosing a particular bandwidth other than by visual 
inspection (Venables & Ripley, 1997).  Some have argued that the bandwidth be no larger than 
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the finest resolution that is desired and others have argued for a variation on random nearest 
neighbor distances (see Spencer Chainey’s article in the attachments section of this chapter). 
Others have argued for particular sizes (Silverman, 1986; Härdle, 1991; Kadafar, 1996; Farewell, 
1999; Talbot, Kulldorff, Forand, & Haley, 2000; see endnote ࢏).  There does not seem to be 
consensus on this issue.  Consequently, CrimeStat leaves the definition up to the user. 
 
 Typically, a narrower bandwidth interval will lead to a finer mesh density estimate with 
lots of ‘peaks and valleys’.  A larger bandwidth interval, on the other hand, will lead to a 
smoother distribution and, therefore, less variability between areas.  While smaller bandwidths 
show greater differentiation among areas (e.g., between >hot spot= and >low spot= zones), one has 
to keep in mind the statistical precision of the estimate.  If the sample size is not very large, 
then a smaller bandwidth will lead to more imprecision in the estimates, and the ‘peaks and 
valleys’ may show nothing more than random variation.  On the other hand, if the sample size 
is large, then a finer density estimate can be produced.  In general, it is a good idea to 
experiment with different fixed intervals to see which results make the most sense. 
 

Adaptive interval 
  
 An adaptive bandwidth adjusts the bandwidth interval so that a minimum number of 
points are found.  This has the advantage of providing constant precision of the estimate over 
the entire region.  Thus, in areas that have a high concentration of points, the bandwidth is 
narrow whereas in areas where the concentration of points is sparser, the bandwidth will be 
larger.  This is the default bandwidth choice in CrimeStat since we believe that consistency in 
statistical precision is paramount.  The degree of precision is generally dependent on the sample 
size of the bandwidth interval.  The default is a minimum of 100 points within the bandwidth 
radius.  The user can make the estimate more fine grained by choosing a smaller number of 
points (e.g., 25) or more smooth by choosing a larger number of points (e.g., 200). Again, 
experimentation is necessary to see which results make the most sense. 
 

Output Unit 
 
 Fourth, the user must indicate the measurement units for the density estimate in points 
per square miles, square nautical miles, square feet, square kilometers, or square meters.  The 
default is points per square mile. 
 

Intensity or Weighting Variable 
 
 If an intensity or weighting variable is to be used (and has been defined on the Primary or 
Secondary file page), the appropriate box must be checked.  Be careful about using both 
intensity and weighting variables to avoid >double weighting=. 
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 Density Calculation 
 
 Finally, the user must indicate the type of output for the density estimates.  There are 
three types of calculation that can be conducted with the kernel density routine.  The 
calculations are applied to each reference cell: 
 

1. The kernel estimates can be calculated as absolute density estimates using 
equations 10.1-10.9, depending on what type of kernel function is used.  The 
estimates at each reference cell are re-scaled so that the sum of the densities over 
all reference grids equals the total number of incidents.  That is, the estimate is 
the number of incidents/points that occurred in each grid cell.  This is the default 
choice.   

 
2. The kernel estimates can be calculated as relative density estimates.  These 

divide the absolute densities by the area of the grid cell. It has the advantage of 
interpreting the density in terms that are familiar.  Thus, instead of a density 
estimate represented by points per grid cell, the relative density will convert this 
to points per square mile or points per square kilometer.  

 
3. The densities can be converted into probabilities by dividing the density at any 

one cell by the total number of incidents.  
 

 Since the three types of calculation are directly interrelated, the output surface will not 
differ in its variability.  The choice would depend on whether the calculations are used to 
estimate absolute densities, relative densities, or probabilities.  For comparisons between 
different types of crime or between the same type of crime and different time periods, usually 
absolute densities are the unit of choice (i.e., incidents per grid cell).  However, to express the 
output as a probability, that is, the likelihood that an incident would occur at any one location, 
then outputting the results as probabilities would make more sense.  For display purposes, 
however, it makes no difference as both look the same. 
 

Output File 
 
 The results can be displayed in an output table or can be output into two formats: 1) 
Raster grid formats for display in a surface mapping program- Surfer for Windows >.dat= format 
(Golden Software, 2008) or ArcGIS Spatial Analyst >asc= format (ESRI, 2012); or 2) Polygon 
grids in ArcGIS >.shp=, MapInfo >.mif= or various Ascii formats. However, all but Surfer for 
Windows require that the reference grid be created by CrimeStat.1 

                         
1  CrimeStat will output the geographical boundaries of the reference grid and will assign a third-variable 
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 Example 1: Kernel Density Estimate of Baltimore County Street Robberies 
 
 An example can illustrate the use of the single kernel density routine.  Figure 10.9 
shows a Surfer for Windows output of 1180 street robberies for 1996 in Baltimore County.  The 
reference grid was generated by CrimeStat and had 100 columns and 90 rows. Thus, the routine 
calculated the distance between each of the 10,800 reference cells and each of the 1180 robbery 
incident locations, evaluated the kernel function for each measured distance, and summed the 
results for each reference cell.  The normal distribution kernel function was selected for the 
kernel estimator and an adaptive bandwidth with a minimum sample size of 100 was chosen as 
the parameters. 
 
 There are three views in the figure: 1) a map view showing the location of the incidents; 
2) a surface view showing a three-dimensional interpolation of robbery density; and 3) a contour 
view showing contours of high robbery density.  The surface and contour views provide 
different perspectives.  The surface shows the peaks very clearly and the relative density of the 
peaks.  As can be seen, the peak for robberies on the eastern part of the County is much higher 
than the two peaks in the central and western parts of the County.  The contour view can show 
where these peaks are located; it is difficult to identify location clearly from a three-dimensional 
surface map.  Highways and streets could be overlaid on top of the contour view to identify 
more precisely where these peaks are located.  
 
 Figure 10.10 shows an ArcGIS map of robbery density with the robbery incident 
locations overlaid on top of the density contours.  Here, we can see quite clearly that there are 
three strong concentrations of incidents, one on the west side, one on the northern border 
between Baltimore City and Baltimore County, and one on the east side which blends with a 
smaller peak in the southeast corner of the County.   
 
 From one perspective, the kernel estimate is a better >hot spot= identifier than the cluster 
analysis routines discussed in Chapters 7 and 8.  Cluster routines group incidents into clusters 
and distinguish between incidents which belong to the cluster and those which do not belong.  
Depending on which mathematical algorithms are used, different clustering routines will return 
differing allocations of incidents to clusters.  The kernel estimate, on the other hand, is a 
continuous surface; the densities are calculated at all locations; thus, the user can visually inspect 

                                                                               
(called Z) as the density estimate.  ArcGIS >.shp= files can be read directly into the program.  For 
MapInfo, on the other hand, the output is in MapInfo Interchange Format (a >.mif= and a >.mid= file). The 
files must be imported to a MapInfo >.tab= file.  For both output formats, the values of Z can be shown as a 
thematic map but the ranges must be adjusted to illustrate the high density locations (i.e., the default values 
in most GIS programs will not display the densities very well).  On the other hand, the default interval 
values for Surfer for Windows and ArcGIS Spatial Analyst provide a reasonably good visualization. 

 



Figure 10.9:



Figure 10.10:
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the variability in density and decide what to call a >hot spot= without having to define arbitrarily 
where to cut-off the >hot spot= zone. 
 
 Going back to the Surfer for Windows output, Figure 10.11 shows the effects of varying 
the bandwidth parameters.  There are three fixed bandwidth intervals (0.5, 1, and 2 miles 
respectively) and there are two adaptive bandwidth intervals (a minimum of 25 and 100 points 
respectively).  As can be seen, the fineness of the interpolation is affected by the bandwidth 
choice.  For the three fixed intervals, an interval of 0.5 miles produced a finer mesh 
interpolation than an interval of 2 miles, which tended to >oversmooth= the distribution.  
Perhaps, the intermediate interval of 1 mile gives the best balance between fineness and 
generality?  For the two adaptive intervals, the minimum sample size of 25 gave very specific 
peak locations whereas the adaptive interval with a minimum sample size of 100 gave a 
smoother distribution.   
 
 Which of these should be used as the best choice would depend on how much confidence 
the analyst has in the results.  A key question is whether the >peaks= are real or merely 
by-products of small sample sizes.  The best choice would be to produce an interpolation that 
fits the experience of the department and officers who travel an area. Again, experimentation and 
discussions with beat officers will be necessary to establish which bandwidth choice should be 
used in future interpolations. 
   
 Note in all five of the interpolations, there is some bias at the edges with the City of 
Baltimore (the three-sided area in the central southern part of the map).  Since the primary file 
only included incidents for the County, the interpolation nevertheless has estimated some 
likelihood at the edges; these are edge biases and need to be ignored or removed with an ASCII 
editor.2  Further, the wider the interval chosen, the more bias was produced at the edge.  
 

Dual Kernel Density Interpolation 
 
 The dual kernel density routine in CrimeStat is applied to two distributions.   For 
example, the primary file could be the location of auto thefts while the secondary file could be 
the centroids of census tracts with the population of the census tract being an intensity variable.   
The dual routine must be used with both a primary file and a secondary file.  Also, it is  

                         
2  All the CrimeStat outputs except for ArcGIS >shp= files are in ASCII.  There are usually >edge effects= and 

values interpreted outside the actual geographical area.  These can be removed with an ASCII editor by 
substituting >0' for the values at the edges or outside the study region. For >shp= files, the values at the edges 
can be edited within the ArcGIS program.  Another alternative is to >cut out= the cells that are beyond the 
study area.  Care must be taken, however, to not edit an output file too much otherwise it will bear little 
relationship to the calculated kernel estimate. 



Figure 10.11:
Interpolation of Baltimore County Vehicle Thefts: 1996Interpolation of Baltimore County Vehicle Thefts: 1996

Different Smoothing Parameters
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necessary to define a reference file, either an existing file or one generated by CrimeStat (see 
Chapter 3).  Several parameters need to be defined. 
 

File to be Interpolated 
 
 The user must indicate the order of the interpolation.  The routine uses the language first 
file and second file in making the comparison (e.g., dividing the first file by the second; adding 
the first file to the second).  The user must indicate which is the first file - the Primary or the 
Secondary.  The default is that the Primary file is the first file. 
 

Method of Interpolation 
 
 The user must indicate the type of kernel estimator.  As with the single kernel density 
routine, five types of kernel density estimators are used 
 

1. Normal distribution (bell; default) 
2. Uniform (flat) distribution 
3. Quartic (spherical) distribution  
4. Triangular (conical) distribution 
5. Negative exponential (peaked) distribution 

 
 In our experience, there are advantages to each.  The normal distribution produces an 
estimate over the entire region whereas the other four produce estimates only for the 
circumscribed bandwidth radius.  If the distribution of points is sparse towards the outer parts of 
the region, then the four circumscribed functions will not produce estimates for those areas, 
whereas the normal will.  Conversely, the normal distribution can cause some edge effects to 
occur (e.g., spikes at the edge of the reference grid), particularly if there are many points near 
one of the boundaries of the study area.  The four circumscribed functions will produce less of a 
problem at the edges, although they still can produce some spikes.  Within the four 
circumscribed functions, the uniform and quartic tend to smooth the data more whereas the 
triangular and negative exponential tend to emphasize >peaks= and >valleys=.  The differences 
between these different kernel functions are small, however.  The user should probably start 
with the default normal function and adjust accordingly to how the surface or contour looks. 
 

Choice of Bandwidth 
 

The user must define the bandwidth parameter.  There are three types of bandwidths for 
the single kernel density routine - fixed interval, adaptive interval, or variable interval.   
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  Fixed interval 
 

With a fixed bandwidth, the user must specify the interval to be used and the units of 
measurement (square miles, square nautical miles, square feet, square kilometers, or square 
meters).  Depending on the type of kernel estimate used, this interval has a slightly different 
meaning.  For the normal kernel function, the bandwidth is the standard deviation of the normal 
distribution.  For the uniform, quartic, triangular, or negative exponential kernels, the 
bandwidth is the radius of the search area to be interpolated.  Since there are two files being 
compared, the fixed interval is applied both to the first file and the second file.  
 

Adaptive interval 
 
 An adaptive bandwidth adjusts the bandwidth interval so that a minimum number of 
points (sample size) is found.  This sample size is applied to both the first file and the second 
file.  It has the advantage of providing constant precision for the kernel estimate over the entire 
region.  Thus, in areas that have a high concentration of points, the bandwidth is narrow while 
in areas where the concentration of points is sparser, the bandwidth will be wider.  This is the 
default bandwidth choice in CrimeStat since consistency in statistical precision is important.  
The degree of precision is generally dependent on the sample size of the bandwidth interval.  
The default is a minimum of 100 points.  The user can make the estimate finer by choosing a 
smaller number of points (e.g., 25) or smoother by choosing a larger number (e.g., 200).  
 
  Variable interval 
 
 With a variable interval, each file (the first and the second) have different intervals.  For 
both, the units of measurements must be specified (square miles, square nautical miles, square 
feet, square kilometers, or square meters).   
 
 There is a good reason why a user might want to use variable intervals.  In comparing 
two kernel estimates, the most common comparison is to divide one by the other.  However, if 
the density estimate for a particular cell for the denominator variable approaches zero, then the 
ratio will blow up and become a very large number.  Visually, this will be seen as spikes in the 
distribution, the result, usually, of too few cases.  In this case, the user might decide to smooth 
the denominator more than numerator to reduce these spikes.  For example, the interval for the 
first file (the numerator) could be 0.5 miles whereas the interval for the second file (the 
denominator) could be 1 mile.  Experimentation will be necessary to see whether this is 
warranted.  But, in our experience, excessively large densities happen when either there are too 
few cases or there is an irregular boundary to the region with a number of incidents grouped at 
one of the edges. 
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  Use kernel bandwidths that produce stable estimates 
 
 Note that with a dual kernel calculation, particularly the ratio of one variable to another, 
it is important not to choose too small a bandwidth. This could have the effect of creating spikes 
at the edges of the study area or in low population density areas.  For example, in low 
population density areas, there will probably be fewer events than in more built-up area.  For 
the denominator of a ratio estimate, an extremely low value could cause the ratio to be 
exaggerated (a >spike=) relative to neighboring grid cells.  Using a larger bandwidth will produce 
a more stable average. 

 
Output Unit 

 
 The user must indicate the measurement units for the density estimate in points per 
square miles, square nautical miles, square feet, square kilometers, or square meters. 
 

Intensity or Weighting Variable 
 
 If an intensity or weighting variable is to be used (and has been defined on the Primary or 
Secondary file page), the appropriate box must be checked.   Be careful about using both 
intensity and weighting variables to avoid >double weighting=. 
 

Density Calculation    
 

The user must indicate the type of density output.  There are six types of density 
calculations that can be conducted with the dual kernel density routine.  The calculations are 
applied to each reference cell:  

 
1. There is the ratio of densities.  This is the first file divided by the second file.  

This is the default choice. For example, if the first file is the location of auto thefts 
incidents and the second file is the location of census tract centroids with the 
population assigned as an intensity variable, then ratio of densities would divide 
the kernel estimate for auto thefts by the kernel estimate for population and would 
be an estimate of auto thefts risk. 

 
2. There is also the log ratio of densities.  This is the natural logarithm of the 

density ratio, that is 
 

Log ratio of densities   =   Ln [ g(xj) / g(yj) ] (10.10) 
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where g(xj) is the density estimate for the first file and g(yj) is the density estimate 
for the second file.  For a variable that has a spatially skewed distribution such 
that most reference cells have very low density estimates, but a few have very 
high density estimates, converting the ratio into a log function will tend to mute 
the spikes that occur.  This measure has been used in studies of risk (Kelsall & 
Diggle, 1995b).  

 
3. There is the absolute difference in densities.  This is the first file minus the 

second file.  This can be a useful output for examining differential effects.  For 
example, by using the centroids of census block groups (see example 2 below) 
with the population of the census block group assigned as an intensity variable, 
the difference in population between two different census years can be estimated. 
Since the spatial arrangements of the block groups changes slightly from one 
census to the next (the U. S. Census Bureau suggests that census units be drawn 
so that there are approximately equal populations in each unit), estimating the 
difference in kernel densities between two census can show where the changes 
have occurred irrespective of the particular census units.  
 

4. There is the relative difference in densities.  Like the relative density in the 
single-kernel routine (discussed above), the relative difference in densities first 
standardizes the densities of each file by dividing by the grid cell area in familiar 
units (square miles or square kilometers) and then subtracts the secondary file 
relative density from the primary file relative density.  This can be useful in 
calculating changes between two time periods, for example in calculating a 
change in relative density between two censuses or a change in the crime density 
between two time periods. 

 
5. There is the sum of the densities.  This is the density estimate for the first file 

plus the density estimate for the second file. A possible use of the sum operation 
is to combine two different density surfaces, for example the density of robberies 
plus the density of assaults; 

 
6. Finally, there is the relative sum of densities. The relative sum of densities first 

standardizes the densities of each file by dividing by the grid cell area in familiar 
units (square miles or square kilometers) and then adds the secondary file relative 
density to the primary file relative density.  This can be useful for identifying the 
total effects of two distributions.  For example, the total impact of robberies and 
burglaries on an area can be estimated by taking the relative density of robberies 
and adding it to the relative density of burglaries.  The result is the combined 
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relative density of robberies and burglaries per unit area (e.g., robberies and 
burglaries per square mile). 
 

 Output File 
 
 Finally, the user must specify the file formats for the output. The results can be output in 
three forms.  First, the results are displayed in an output table. Second, the results can be output 
into two raster grid formats for display in a surface mapping program: Surfer for Windows 
format as a >.dat= file (Golden Software, 2008) and ArcGIS Spatial Analyst format as an ‘asc= file 
(ESRI, 2012).  Third, the results can be output as polygon grids into ArcGIS >.shp=, MapInfo 
>.mif= and various Ascii formats (see footnote 1). All but Surfer for Windows require that the 
reference grid be created by CrimeStat. 
 

  Example 2: Kernel Density Estimates of Vehicle Thefts Relative to Population 
 
 As an example of the use of the dual kernel density routine, the dual routine is applied in 
both the City of Baltimore and the County of Baltimore to 14,853 motor vehicle theft locations 
for 1996 relative to the 1990 population of census block groups.  Again, a reference grid of 100 
columns by 108 rows was generated by CrimeStat.  
 
 Figure 10.12 shows the resulting density estimate as a Surfer for Windows output; again, 
there is a map view, a surface view, and a contour view.  The normal kernel function was used 
and an adaptive bandwidth of 100 points was selected.  As seen, there is a very high 
concentration of auto theft incidents within the central part of the metropolitan area.  The 
contour view suggests five or six peak areas that are close to each other. 
 
 Much of this concentration, however, is produced by high population density in the 
metropolitan center.  Figure 10.13, for example, shows the kernel estimate for 1349 census 
block groups for both the City of Baltimore and the County of Baltimore with the 1990 
population assigned as the intensity variable.  Again, the normal kernel function was used with 
an adaptive bandwidth of 100 points being selected.  The map shows three views: 1) a surface 
view; 2) a contour view; and 3) a ground level view looking directly north.  The distribution of 
population is, of course, also highly concentrated in the metropolitan center with two peaks, 
quite close to each other with several smaller peaks. 
 
 When these two kernel estimates are compared using the dual kernel density routine, a 
more complicated picture emerges (Figure 10.14).  This routine has conducted three operations: 
1) it calculated the distance between each of the 10,800 reference cells and the 14,853 auto theft 
locations, evaluated the kernel function for each measured distance, and summed the results for 
each reference cell; 2) it calculated the distance between each of the 10,800 reference cells and 
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Baltimore Metropolitan Population: 1990
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the 1349 census block groups with population as an intensity variable, evaluated the kernel 
function for each intensity-weighted distance, and summed the results for each reference cell; 
and 3) divided the kernel density estimate for auto thefts by the kernel density estimate for 
population for each reference cell location.   
 
 While the concentration of motor vehicle thefts relative to population (>motor vehicle 
theft risk@) is still high in the metropolitan center, there are bands of high risk that spread 
outward, particularly along major arterials.  There are now many >hot spot= areas that have a 
high distribution of motor vehicle thefts relative to the residential population.  We could, of 
course, refine this analysis further by taking, for example, employment as a baseline variable 
rather than population; employment is a better indicator for the daytime population distribution 
whereas the residential population is a better indicator for nighttime population distribution 
(Levine, Kim, & Nitz, 1995a; 1995b). 
 

Example 3: Kernel Density Estimates and Risk-adjusted Clustering of Robberies 
Relative to Population 

 
 The final example shows how the dual kernel interpolation compares with the 
risk-adjusted nearest neighbor clustering, discussed in chapter 6. Figure 10.15 shows 15 
first-order and two second-order risk-adjusted clusters overlaid on the dual kernel estimate of 
1996 robberies relative to 1990 population.3 As seen, there is a correspondence between the 
identified risk-adjusted clusters and the dual kernel interpolation of the ratio of robberies to 
population.  For a broad regional perspective, the interpolation produces an adequate model of 
where there is a high robbery risk.  At the neighborhood level, however, the risk-adjusted 
clusters are more specific and would be preferable for use by police in identifying high-risk 
locations. 
 
 The advantage of a dual kernel density interpolation routine is that two variables can be 
related together. By interpolating one variable to a reference grid and then interpolating a second 
variable to the same reference grid, the two variables have been interpolated to the same 
geographical units. The two interpolations can then be related, by dividing, subtracting, or 
summing. As has been mentioned throughout this manual, one of the problems with techniques 
that depend on the concentration of incidents is that they ignore the underlying population 
at-risk. With the dual routine, however, we can start to examine the risk and not just the 
concentration. 
 

                         
3  The risk-adjusted hierarchical clustering (Rnnh) method defined the largest search radius but a minimum of 

25 points being required to be clustered.  The kernel estimate for both the Rnnh and the dual-kernel 
routines used the normal distribution function with an adaptive bandwidth of 25 points. 
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 Visually Presenting Kernel Estimates 
 
 Whether the single- or dual-kernel estimate is used, the result is a grid interpretation of 
the data.  By scaling these values in a GIS program, a visualization of the data is obtained.  
Areas with higher densities can be shown in darker tones and those with lower densities can be 
shown in lighter tones; some people do the opposite with the high density areas being lighter.  
 
 To make the visualization even more realistic, one could use a GIS program to cut out 
those grid cells that are outside the study area or are on water bodies. Before doing this, however, 
be sure to re-scale the estimated AZ@ values so that they will sum to the total of the original grid.  
For example, if the original sample size was 1000, then the grid cells will sum to 1000 if the 
absolute density option is chosen.  If, say, 20% of these cells are then removed to improve the 
visualization, then the grid cell Z values have to be re-scaled so that their sum will continue to be 
1000.   A simple way to do this is to, first, add up the Z values for the remaining cells and, 
second, multiply each grid cell Z by the ratio of the original sum to the reduced sum. 
 

Advantages and Limitations of Kernel Density Interpolation 
 
 There are advantages and limitations to the kernel density interpolation method for hot 
spot analysis.   
 
 Advantages of Kernel Density Interpolation 
 
 The main advantage of kernel density interpolation is its ability to visualize a broad, 
regional view of events.  Whereas each of the hot spot analysis techniques discussed in 
Chapters 7 and 8 (and 9 for the Zonal Nnh) drew boundaries around the hot spots, kernel density 
interpolation provides density estimates through the study area. One can see all the high density 
and low density areas simultaneously.  For example, this can provide a police department with 
an overview of the high crime areas and can form the basis of patrol deployment. Essentially, for 
a city-wide or region-wide view, there is no better technique (Chainey, Thompson & Uhlig, 
2008). 
 
 Limitations of Kernel Density Interpolation 
 
 At the same time, there are limitations to the approach for hot spot analysis.  There are 
three statistical problems.  First, the method does depend on overgeneralizing data.  By 
interpolating N data points to M grid cells where M is almost always much greater than N, means 
that the data are being shared across many grid cells.  This can lead to overgeneralization of 
results.  For example, 10,000 cases seems like a large data set (which it normally is), but when 
it is generalized to 10,000 grids (100 columns x 100 rows), this leaves an average of 1 data point 
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per grid cell. It is well known that sampling error is very high with small samples and almost 
infinitely high with a sample size of 1.  Yet the method pools the data so that every grid cell is 
represented by all (for the normal distribution kernel) or most (for the other kernels) data points.  
This leads to additional spatial autocorrelation among the estimates since each grid cell shares 
the same data points with adjacent grid cells.  The practical effect of this is that a hot spot can 
appear to be larger than it truly is.  Too many users are taking kernel density interpolations as 
evidence of hot spots even with very small samples.  These hot spots will turn out to be nothing 
more than random variation.  Again, if used carefully, the method can provide an overview of 
crime density in a study area.  But, one has to be very, very careful in using the method to 
define specific hot spots. 
 
 Second, like other hot spot analysis methods, kernel density interpolation is effected by 
the choice of kernel used and the selected bandwidth. The normal distribution kernel, for 
example, will smooth the data and eliminate small nodules (‘peaks and valleys’) whereas the 
quartic and exponential kernels will emphasis the small nodules.  Whether the more granular 
variation in density estimates is valid or not depends on the sample size.  With a small sample 
size, small hot spots may be nothing more than random variation and may not be real.  Unless 
the sample size is very large (meaning 10,000 or more cases), we recommend using the normal 
distribution kernel to avoid finding false hot spots.  In addition, the selected bandwidth 
determines the smoothness of the visualization.  Again, if the sample size is large, a smaller 
bandwidth is appropriate whereas a larger bandwidth is more desirable for smaller samples.  
One has to consider the precision of the estimates, which is a function of the sample size (i.e., 
larger is better). 
 
 Third, because the technique smoothes data, it is often inappropriate for small area 
analysis.  It will lead to generalization of data points into adjacent areas from where the events 
occur and can lead to false conclusions (Levine, 2008).  For example, motor vehicle crashes 
typically occur on freeways, highways, major arterial roads, and minor arterial roads.  Few 
occur on residential (neighborhood) streets, typically less than 15%.  Levine (2009) found that 
only 11% of motor vehicle crashes in the Houston metropolitan area occurred on local roads 
even though these roads accounted for 61% of the total road mileage in the region. The 
likelihood of a crash occurring on any particular local road is extremely small.  However, since 
nearly one half of the crashes occurred at intersections, the method would generalize crashes at 
two intersecting arterial roads into the adjacent neighborhood streets when, in reality, very few 
crashes will occur on those streets.  
 
 Similarly, Levine (2008) showed how vehicle thefts that were concentrated in parking 
lots in a commercial area of Houston were generalized by kernel density interpolation into the 
local residential neighborhoods.  In other words, the method produces spatial distortion 
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especially for small area (large-scale), neighborhood-level analysis.  Very often, hot spots are 
very limited spatially, sometimes into an area less than half a block wide.   
 
 Taking another example, in a 1986 study of dangerous bus stops in Los Angeles, the most 
serious one was identified on one corner of a Hollywood (CA) intersection (Levine, Wachs & 
Shirazi, 1986).  The hot spot involved a drug trade that occurred at a food stand on the corner 
and was supplied by drug dealers who used a bar near the intersection for cover.  The crimes 
occurred only on that corner of the intersection; the other three corners had no crime events. 
 
 In other words, the amount of smoothing involved in kernel density interpolation will 
distort spatial relationships for very small hot spots and will make it appear as if there is a risk in 
nearby blocks when there might not be such a risk.  The use of one of the cluster routines 
discussed in chapters 7 and 8 would be more appropriate for small area analysis.  
 

Conclusion 
 
 Kernel density estimation is one of the most utilized spatial statistical techniques.  There 
is currently research on the use of this technique in both the statistical theory and in developing 
applications.  For crime analysis, the technique represents a powerful way of conducting both 
regional hot spot analysis as well as being able to link the hot spots to an underlying 
population-at-risk.  It can be used both for police deployment by targeting areas of high 
concentration of incidents as well as for prevention by targeting areas with high risk.  It can also 
be used as a research tool for analyzing two or more distributions. Caution has to be used in 
adapting the method for small area (large scale) neighborhood type of analysis.  Other 
techniques are more appropriate for that level. 
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Endnotes 
 
i. There are differences in opinion about how wide a particular fixed bandwidth should be determined. The 

smoothing is done for a distribution of values, Z. If there are only unique points (and, hence, there is no Z 
value at a point), the distances between points can be substituted for Z.  Thus, MeanD is the mean 
distance, sd(D) is the standard deviation of distance, and iqr(D) is the inter-quartile range of distances 
between points.  These would be substituted for MeanZ, sd(Z), and iqr(Z) respectively 

 
Silverman (1986; 45-47; Härdle, 1991; Farewell, 1999) proposed a bandwidth, h, of: 
 

 ݄ ൌ 1.06 ∗ min	ሼ݀ݏሺܼሻ
௜௤௥ሺ௓ሻ

ଵ.ଷସ
ሽܰି

భ
ఱ 

 
 

where min is the minimum of the next two terms, sd(Z) is the standard deviation of the variable, Z, being 
interpolated, iqr(Z) is the inter-quartile range of Z, and N is the sample size.   
 
Bowman and Azzalini (1997; 31) defined a slightly different optimal bandwidth for a normal kernel: 
 

 ݄ ൌ ሼ
ସ

ଷே
ሽ
భ
ఱ ∗  ሺܼሻܦܵ

 
To avoid being influenced by outlier, they suggested using the median absolute deviation estimator for 
sd(Z): 
 

ሺܼሻܦܣܯ  ൌ ݉݁݀݅ܽ݊ሼ
௓ሺ௜ሻିெ௘ௗ௜௔௡௓

଴.଺଻ସହ
ሽ 

 
 

Scott (1992) suggested an upper bound on the normal kernel of 
 

h = 1.144 * sd(Z) * N-1/5 
 

Bailey and Gatrell (1995, 85-87) offered a rough choice for the bandwidth of 
 

  ݄ ൌ 0.68ܰି
భ
ఱ 

 
but suggested that the user could experiment with different bandwidths to explore the surface. 

 
On the other hand, the concept of an adaptive bandwidth is based more on sampling theory (Bailey & 
Gatrell, 1995).  By increasing the bandwidth until a fixed number of points are counted ensures that the 
level of precision is constant throughout the region.  As with all sampling, the standard error of the 
estimate is a function of the sample size; a larger sample leads to smaller error.  In general, if there was 
independent sampling, the 95% confidence interval of a bandwidth for a normal kernel could be 
approximated by: 
 

݈ܽݒݎ݁ݐ݊݅	݂݁ܿ݊݁݀݅݊݋ܿ	95%  ൌ ܼ̅ േ 1.96
଴.ହ

ேሺ௛ሻ
భ
మ
 ሺܼሻ݀ݏ

 
where N(h) is the adaptive sample size (the number of points counted within the bandwidth for the adaptive 
kernel).  This assumes that a point has an equal likelihood of falling within the bandwidth of one cell 
compared to an adjacent cell (i.e., it sits on the boundary of the bandwidth circle). The adaptive bandwidth 
criterion requires that the bandwidth be increased until it captures the specified number of points. 
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Endnotes (continued) 
 
On average, if there are N points in a region of area, A, and if the adaptive sample size is N(p), then the 
average area required to capture N(p) points is: 
 

ሻ݌ሺܣ  ൌ
஺ேሺ௣ሻ

ே
 

 
and the average bandwidth, Mean(h), is: 
 
 

ሺ݄ሻ݊ܽ݁ܯ  ൌ ට஺ሺ௣ሻ

గ
ൌ ට஺ேሺ௣ሻ

ேగ
 

 
Each of these provide different criteria for the bandwidth size with the adaptive being the most 
conservative.  For example, for a standardized distribution with 1000 data points, a standardized mean of Z 
of 0 and a standardized standard deviation of 1, the Silverman criteria would produce a bandwidth of 
0.2663; the Bowman and Azzalini criteria would produce a bandwidth of 0.2661; the Scott criteria would 
produce a bandwidth of 0.2874 and the Bailey and Gatrell criteria would produce a bandwidth of 0.1708.  
For the adaptive interval, if the required adaptive sample size is 25, then the average bandwidth would be 
approximately 0.3162 (this assumes that the area is a circle with a radius of 2 standardized standard 
deviations).  
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Kernel Density Interpolation to Estimate Sampling Bias in the Climatic 
Response of Sphagnum Spores in North America 

 
Mike Sawada 

 Laboratory for Applied Geomatics and GIS Science 
 University of Ottawa, Department of Geography, Canada 
 
 Sphagnum moss, the dominant species of bogs, thrives under certain ranges of 
temperature and precipitation.  Sphagnum releases spores for reproduction and these are 
transported, often long distances, by wind and water.  Thus, the presence of a spore in the fossil 
record may not indicate nearby Sphagnum plants.  However, spores should be most numerous 
near Sphagnum plants.  Over time, these spores and pollen from other plants accumulate in lake 
and bog sediments and leave a fossil record of vegetation history.   
 

We wanted to use the amount of fossil Sphagnum spores in different parts of North 
America to infer past climates.  To do so, we had to first show that Sphagnum spores are most 
abundant in climates where Sphagnum plants thrive and secondly, that this center of abundance 
is not biased sampling because of under sampling in parts of climate space.  First, we developed 
a Sphagnum spore response surface showing the relative abundance of spores along the axes of 
temperature and precipitation (Fig. A).   
 
 CrimeStat was used in the second stage to develop a kernel density surface using a 
quartic kernel for 3007 sample sites within climate space (Fig. B).  These were smoothed and 
visualized in Surfer.  The surface showed that the intensity of points is higher in regions 
surrounding the response maximum.  This gave us confidence that the Sphagnum response was 
real since other parts of climate space are well sampled but unlikely to produce high spore 
proportions.  This fact allowed climate inferences to be made within the fossil record for past 
time periods using the amount of Sphagnum spores present.   
 

 

Figures modified from Gajewski, Viau, Sawada et al. 2001. Global Biogeochemical Cycles, 



Describing Crime Spatial Patterns By Time of Day in Belo Horizonte 
 

Renato Assunção, Cláudio Beato, Bráulio Silva 
CRISP, Universidade Federal de Minas Gerais, Brazil  

 
We used the kernel density estimate to visualize time trends for crime occurrences 

on a typical weekday.  We found markedly different spatial distributions depending on 
the time, with the amount of crime varying and the hot spots, identified by the ellipses, 
appearing in different places. 

  
The analysis used 1114 weekday robberies from 1995 to 2000 in downtown Belo 

Horizonte. Breaking the data into hours, we used the normal kernel, a fixed bandwidth of 
450 meters and outputted densities option (points per square unit of area). Note that the 
latter option could be useful if one is interested only in the hot spot locations, and not in 
the distribution during the day. To make the ellipses, we used the nearest neighbor 
hierarchical spatial clustering technique with a minimum of 35 incidents. We output the 
results to MapInfo, keeping the same scale for all maps. Four of them are shown below.  
 
 

 
9:00 AM 1:00 PM

7:00 PM 11:00 PM



Using Kernel Density Smoothing and Linking to ArcGIS: 
Examples from London, England 

 
Spencer Chainey 

Jill Dando Institute of Crime Science 
University College 
London, England 

 
CrimeStat offers an effective method for creating kernel density surfaces. The 

example below uses residential burglary incidents in the London Borough of Croydon, 
England for the period June 1999 – May 2000 (N=3104). The single kernel routine was 
used to produce a kernel density surface representing the distribution of residential 
burglary.   

 
The kernel function used was the quartic, which is favoured by most crime 

mappers as it applies added weight to crimes closer to the centre of the bandwidth.  
Rather than choosing an arbitary interval it is useful to use the mean nearest neighbour 
distance for different orders of K, which can be calculated by CrimeStat as part of a 
nearest neighbour analysis.  For the Croydon data, an interval of 269 metres was chosen, 
which relates to a mean nearest neighbour distance at a K-order of 13.  The output units 
were densities in square kilometres and was output to ArcGIS. 
 

Kernel density estimation is a particularly useful method as it helps to precisely 
identify the location, spatial extent and intensity of crime hotspots.  It is also visually 
attractive, so helping to invoke further enquiry and the reasoning behind why crime and 
disorder is concentrated. The density surface that is created can reflect the distribution of 
incidents against the natural geography of the area of interest, including representing the 
natural boundaries, such as reservoirs and lakes, or an alignment that follows a particular 
street in which there is a high concentration of offending.  The method is also less 
subjective if clear guidelines are followed for the setting of parameters.  
 

 



Infant Death Rate and Low Birth Weight  
in the I-5 Corridor of Seattle and King County 

 
Richard Hoskins 

Washington State Department of Health 
Olympia, Washington 

 
 Although the infant death rate (< 1 year old) has been steadily declining in 
Washington, the incidence of low birth weight (< 2500 gms) is increasing. This is a 
significant public health problem, resulting in suffering and high medical cost.  If we 
know where the rates are high at a neighborhood level we can develop more efficient and 
effective programs.  The goal is to determine regions where rates are clustered and to 
characterize those regions with respect to SES variables from the US Census.  
 
 Birth and infant death data were geocoded to the street level. In order to detect 
clusters of high infant death and low birth weight, several CrimeStat tools were used. We 
find that using several tools at once helps detect regions where something untoward is 
going on and also helps develops guesses about where other problems might be expected 
develop.   

  
 The result of a kernel density interpolation using a normal estimator is shown 
above along with an empirical Bayes rate and standardized mortality ratio (SMR) 
calculated in SAS and mapped in Maptitude (www.caliper.com). Starting with over 2,500 
infant deaths, about 25,000 low weight births (out of over 500,000 live births) occurred in 
the Seattle I-5 corridor region in King County from 1989-2002.  The kernel density 
method was used to detect high rate regions. A clearly articulated region and ridge 
appears on the grid of the kernel density map and the 3D and prism maps.  
    
 

I-5 corridor in Kernel density Top:  3-D map: empirical Bayes rate    
King County  interpolation Bottom:  Prism map: SMR 



The Risk of Violent Incidents Relative to Population Density in Cologne Using 
the Dual Kernel Density Routine 

 
Dietrich Oberwittler and Marc Wiesenhütter 

Max Planck Institute for Foreign and International Criminal Law 
Freiburg, Germany 

 
When estimating the density of street crimes within a metropolitan area by interpolating 

crime incidents, the result is usually a very high concentration in the city center.  However, there 
is also a very high concentration of people either living or pursuing their daily routine activities 
in these areas.  The question emerges how likely is a criminal event when taking into account the 
number of people spending their time in these areas.  The CrimeStat dual kernel density routine 
is able to estimate a ratio density surface of crime relative to the 'population at risk'. 

  
In this example, data on ‘calls to the police’ for assault and battery from April 1999 to 

March 2000 (N=6363 calls) and population from Cologne were used.  Exact information on the 
number of people spending their time in the city does not exist. Therefore, 1997 counts of pas-
sengers entering and leaving the public transport system at each of 550 stations and bus stops in 
the city was used as a proxy variable. The number of persons at each station or bus stop was as-
signed to adjacent census tracts and added to the resident population resulting in a crude measure 
of the 'population at risk'. 

 
In the dual kernel routine, the density estimate of crime incidents is compared to the den-

sity estimate of the population at risk, defined by the centroids of census tracts with the number 
of persons as an intensity variable.  We chose the normal method of interpolation and adaptive 
intervals with a minimum of five points.  The adaptive bandwidth adjusts for the fact that there 
are fewer incidents and census tracts at the edges of the city, resulting in a relatively smoother 
density surface for the ratio.  The results were output to ArcView. 

 
The effect of adjusting the crime distribution for the underlying 'population at risk' be-

comes quite visible. Whereas the concentration of crime is highest in the city center (left map), 
the crime risk (right map) is in fact much higher in several more distant areas that are known for 
high concentrations of socially disadvantaged persons. Given the imperfect nature of the popula-
tion data these results should be interpreted as a broad view on the distribution of crime risk that, 
nevertheless, has important policy implications.  
 
  Single kernel density of crime incidences 

(assault & battery, Cologne 1999/2000) 
Dual kernel density of crime incidences  
relative to population at risk 



Kernel Density Interpolation of 
Police Confrontations in 

Buenos Aires Province, Argentina:  1999 
 

Gastón Pezzuchi 
Crime Analyst 

Buenos Aires Province Police Force 
Buenos Aires, Argentina 

 
One of our first tryouts with the CrimeStat software involved the calculation of 

both single and dual kernel density interpolations using data on 1999 confrontations with 
the police within Buenos Aires Province, an area that covers 29 counties around the 
Federal Capital. The confrontations include mostly gun fights with the police but also 
other attacks (e.g., knives, rocks, sticks).  In the last three years, there has been an 
increase in confrontations with the police. The single interpolation shows a density 
surface that gives a good picture of the ongoing level of violence while the dual 
interpolations shows a risk surface using the personnel deployment data; the latter are 
confrontations relative to the number of police deployed.  Typically, police are allocated 
to areas according to crime rates.\ 

 

Events = Police shootings (aprox. 800)

Buenos Aires City
(No-Data)

Buenos Aires City
(No-Data)

Example: Kernel Density Estimation
(CrimeStat)

Single Interpolation - Density of Events Dual Interpolation - Ratio of densities (Risk)
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Both images are quite different, suggesting varying policing strategies.  For 
example, though there are two well-defined hot spot areas in the Province (one in the 
north, the other in the south), the high levels of risk detected in the southern areas came 
as a complete surprise.  The northern area has a higher crime rate than the southern area, 
hence a high police deployment.  However, the level of confrontation is approximately 
equal between the two areas. 



Evolution of the Urbanization Process in the Brazilian Amazonia 
 

Silvana Amaral, Antônio Miguel V. Monteiro, Gilberto Câmara, José A. Quintanilha 
INPE, Instituto Nacional de Pesquisas Espaciais, Brazil 

 
The Brazilian Amazon rain forest is the world’s largest contiguous area of tropical 

rain forest in the world. During the last three decades, the region has experienced the 
largest urban growth rates in Brazil, a process that has reorganized the network of human 
settlements in the region. We used the CrimeStat single and dual kernel density routines 
to visualize trends in urbanization from 1996 to 2000 in Amazonia.  Two variables were 
used to measure urbanization: 1) the concentration of urban nuclei (city density); and 2) 
the ratio of urban to total population.  

 
The concentration of cities was spatially associated with federal roads in the 

eastern and southern portions, and along the Amazonas River in the middle of the region. 
Additionally, the surfaces of urban population show that city density is not always 
associated with large urban populations. From 1996 to 2000 city density increased in the 
western Amazonia (Pará state) at a greater rate than the growth of the urban population. 
In the southeastern part of the region (Rondônia state), there were many urban centers.  
But the ratio of urban to total population was small, indicating that they are 
predominately agricultural regions.  

 
 
 

 

Urban Pop/Total Pop-1996 

City density - 2000 

 
City density - 1996 

Urban Pop/Total Pop-2000 



Using Small Area Estimation to Target Health Services  
in Harris County, TX 

 
Thomas F. Reynolds, MS 

University of Texas-Houston School of Public Health 
 
 In Texas, the City of Houston and Harris County organized a Public Health Task 
force to make recommendations concerning the provision of health services for those 
without health insurance.  Task force members wanted to know approximately how many 
area citizens did not have health insurance.  
 
 Data from the two most recent Current Population Survey Annual Social and 
Economic Supplements (CPS-ASEC, 2003-04) were used to derive a synthetic estimate 
using a stratified model.  Estimates were calculated at census tract and block group 
levels.  Selected political divisions were clipped from base maps for political officials and 
legislators. 
 
 Percentages are indicative of risk.  On the other hand, numbers are essential for 
targeting physical resources. There is seldom a perfect correspondence between high 
percentages and large numbers.   For example, an area with a concentration of multi-
family housing may have a relatively small percentage, but a large number, of uninsured.  
Percentage maps of the uninsured (figure 1) are generally clustered and informative; 
however, due to large variations in population numbers at both levels of census 
geography, maps of the population densities of uninsured proved most valuable to 
officials (figure 2). 
 
 CrimeStat was used to develop the density maps.  The single kernel density 
routine was used to estimate the density of block group values using the centroid to 
represent the values and the number of uninsured as an intensity value. The Moran 
Correlogram was used to select the type of kernel for the single-kernel interpolation (a 
uniform distribution) and an optimal bandwidth.   
 
Fig. 1:  Percent Uninsured Fig. 2:  Population Density of Uninsured 



 

 

Identifying Voucher Holder and Crime Concentrations using Dual 
Kernel Density Estimation 

 
Ron Wilson, U.S. Department of Housing and Urban Development 

 
Public housing authorities and law enforcement are cooperating to reduce neighborhood 
crime where Housing Choice Voucher Program (HCVP) participants concentrate. When 
police departments and housing authorities can identify geographically combined 
voucher holder and crime concentrations, more specific strategies can be employed to 
reduce those crimes and prevent victimization. Aggravated assaults are common in and 
around neighborhoods where HCVP households concentrate. I used the relative sum of 
densities option of the Dual Kernel Density Estimation routine in CrimeStat IV to identify 
where HCVP households and aggravated assaults were concentrated in 2010.  
 
Several areas of voucher holder and aggravated assault concentrations are revealed with 
gradations in density, some in census tracts with high poverty. The Dallas Police 
Department might deploy varying community policing approaches in these areas based 
on concentration grade to reduce assault opportunities while building relationships with 
neighborhood residents. The Dallas Public Housing Authority may help voucher holders 
find safer neighborhoods to relocate outside the concentrated areas, in particular to areas 
with low poverty. These findings may also help Dallas city officials craft separate place-
based polices that work to eliminate the root causes of aggravated assaults in these areas.  
 

 




