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6.1 

Chapter 6: 

Distance Analysis I and II 
 
 In this chapter, the characteristics of the distances between points will be described.  The 
previous chapter provided tools for describing the general spatial distribution of crime incidents 
or first-order properties of the incident distribution (Bailey and Gattrell, 1995).  First-order 
properties are global because they represent the dominant pattern of distribution - where the 
points are centered, how far they spread out, and whether there is any orientation to the 
dispersion.  Second-order (or local) properties, on the other hand, refer to sub-regional or 
‘neighborhood’ patterns within the overall distribution.  If there are distinct ‘hot spots’ where 
many crime incidents cluster together, their distribution is spatially related to something unique 
in the sub-region or neighborhood, and less to the global distribution  Second-order 
characteristics indicate how particular environments concentrate crime incidents.  
 
 There are two distance analysis pages.  In Distance analysis I, various second-order 
statistics are provided, including: 
 

1. NN 
2. Linear NN 
3. Ripley 
4. Assign primary points to secondary points 

 
 In Distance analysis II, there are four routines for calculating and outputting distance 
matrices.  This chapter will discuss both sets of routines. 
 

Distance Analysis I 

 
 Figure 6.1 shows the Distance analysis I screen and the distance statistics on that page 
that are calculated by CrimeStat. 
 

Nearest Neighbor Index 
 
 One of the oldest distance statistics is the nearest neighbor index.  It is particularly useful 
because it is a simple tool to understand and to calculate.  It was developed by two botanists in  
 
 
 



Distance Analysis I Screen
Figure 6.1:
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the 1950s (Clark and Evans, 1954), primarily for field work, but it has been used in many 
different fields for a wide variety of problems (Cressie, 1991).  It has also become the basis of 
many other types of distance statistics, some of which are implemented in CrimeStat.   
 
 The nearest neighbor index compares the distances between nearest points and distances 
that would be expected on the basis of chance.  It is an index that is the ratio of two summary 
measures.  First, there is the nearest neighbor distance.  For each point (or incident location) in 
turn,݅, the distance to every other point, ݆, is calculated and minimum selected (the nearest 
neighbor).  The nearest neighbors are then averaged over all points: 
    

 ݀ேே ൌ ∑ ∑
ெ௜௡ሺௗ೔ೕሻ

ே
ேିଵ
௜ஷ௝ୀଵ

ே
௜ୀଵ                      (6.1) 

 
where Min(dij) is the distance between each point and its nearest neighbor and N is the number of 
points in the distribution.  Thus, in CrimeStat, the distance from a single point to every other 
point is calculated and the smallest distance (the minimum) is selected. Then, the next point is 
taken and the distance to all other points (including the first point measured) is calculated with 
the nearest being selected and added to the first minimum distance.  This process is repeated 
until all points have had their nearest neighbor selected.  The total sum of the minimum distances 
is then divided by N, the sample size, to produce an average minimum distance. 
 
 The second summary measure is the expected nearest neighbor distance if the distribution 
of points is completely spatially random.  This is the mean random distance (or the mean random 
nearest neighbor distance).  It is defined as: 
 

 ݀ேேሺ௥௔௡ሻ ൌ 0.5ට஺

ே
                      (6.2) 

 
where A is the area of the region and N is the number of incidents.   Since A is defined by the 
square of the unit of measurement (e.g., square mile, square meters, etc.), it yields a random 
distance measure in the same units (i.e., miles, meters, etc.).1  If defined on the measurement  

                                                 
1  There is also a mean random distance for a dispersed pattern, called the mean dispersed distance (Ebdon, 

1988).  It is defined as: 

  ݀ௗ௜௦௣௘௥௦௘ௗ ൌ
√ଶ

ଷభ/రට
ಿ
ಲ

 

where N is the number of points and A is the area.  A nearest neighbor index can be set up comparing the 
observed mean neighbor distance with that expected for a dispersed pattern.  CrimeStat only provides the 
traditional nearest neighbor index, but it does output the mean dispersed distance. 
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parameters page by the user, CrimeStat will use the specified area in calculating the mean 
random distance.  If no area measurement is provided, CrimeStat will take the rectangle defined 
by the minimum and maximum X and Y points. 
 
 The nearest neighbor index is the ratio of the observed nearest neighbor distance to the 
mean random distance 
 

ܫܰܰ  ൌ ௗಿಿ
ௗಿಿሺೝೌ೙ሻ

             (6.3) 

 
 Thus, the index compares the average distance from the closest neighbor to each point 
with a distance that would be expected on the basis of chance.  If the observed average distance 
is about the same as the mean random distance, then the ratio will be about 1.0.  On the other 
hand, if the observed average distance is smaller than the mean random distance, that is, points 
are actually closer together than would be expected on the basis of chance, then the nearest 
neighbor index will be less than 1.0.  This is evidence for clustering.  Conversely, if the observed 
average distance is greater than the mean random distance, then the index will be greater than 
1.0.  This would be evidence for dispersion, that points are more widely dispersed than would be 
expected on the basis of chance. 
 
 Testing the Significance of the Nearest Neighbor Index 
 
 Some differences from 1.0 in the nearest neighbor index would be expected by chance.  
Clark and Evans (1954) proposed a Z-test to indicate whether the observed average nearest 
neighbor distance was significantly different from the mean random distance (Hammond and 
McCullagh, 1978; Ripley, 1981).  The test is between the observed nearest neighbor distance and 
that expected from a random distribution and is given by: 
 

 ܼ ൌ
ௗಿಿିௗಿಿሺೝೌ೙ሻ

ௌா೏ሺೝೌ೙ሻ
                      (6.4) 

 
where the standard error of the mean random distance is approximately given by: 
 

ௗሺ௥௔௡ሻܧܵ  ≅ ටሺସିగሻ஺

ସగேమ
ൌ ଴.ଶ଺ଵଷ଺

ටಿ
మ

ಲ

                     (6.5) 

 
with A being the area of region and N the number of points.  There have been other suggested 
tests for the nearest neighbor distance as well as corrections for edge effects (see below).  
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 However, equations 6.4 and 6.5 are used most frequently to test the average nearest 
neighbor distance.  See Cressie (1991) for details of other tests. 
 

Calculating the Statistics 
 
 Once nearest neighbor analysis has been selected, the user clicks on Compute to run the 
routine.  The program outputs 11 statistics:  
 

1. The sample size 
2. The mean nearest neighbor distance 
3. The standard deviation of the nearest neighbor distance 
4. The minimum distance 
5. The maximum distance 
6. The mean random distance for both the bounding rectangle and the user input 

area, if provided 
7. The mean dispersed distance for both the bounding rectangle and the user input 

area, if provided 
8. The nearest neighbor index for both the bounding rectangle and the user input 

area, if provided 
9. The standard error of the nearest neighbor index for both the maximum bounding 

rectangle and the user input area, if provided 
10. A significance test of the nearest neighbor index (Z-test) 
11. The p-values associated with a one tail and two tail significance test. 

 
 In addition, the output can be saved to a ‘.dbf’ file, which can then be imported into 
spreadsheet or graphics programs. 
 

Example 1: The Nearest Neighbor Index for Baltimore County Street Robberies 
 
 In 1996, there were 1,181 street robberies in Baltimore County.  The area of the County 
is about 607 square miles and is specified on the measurement parameters page.  CrimeStat 
returns the statistics shown in Table 6.1 with the NNA routine.  The mean nearest neighbor 
distance was 0.116 miles while the mean nearest neighbor distance under randomness was 0.358.  
The nearest neighbor index (the ratio of the actual to the random nearest neighbor distance) is 
0.3236.  The Z-value of -44.4672 is highly significant.  In other words, the distribution of the 
nearest neighbors of street robberies in Baltimore County is significantly smaller than what 
would be expected randomness. 
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 It should be noted that the significance test for the nearest neighbor index is not a test for 
complete spatial randomness, for which it is sometimes mistaken.  It is only a test whether the 
average nearest neighbor distance is significantly different than what would be expected on the 
basis of chance.  In other words, it is a test of first-order nearest neighbor randomness.2  There 
are also second-order, third-order, and so forth distributions that may or may not be significantly 
different from their corresponding orders under complete spatial randomness.  A complete test 
would have to test for all those effects, what are called K-order effects. 
 

Table 6.1: 

Nearest Neighbor Statistics for 
1996 Street Robberies in Baltimore County 

(N=1181) 
 

 Mean nearest neighbor distance: 0.11598 mi 
 Mean random distance based  
   on user input area: 0.35837 mi 

 Nearest neighbor index: 0.3236       
 Standard error: 0.00545 mi 

 Test Statistic (Z): -44.4672 
 p-value (one tail) ≤.0001 
 p-value (two tail) ≤.0001 

 
 
Example 2: The Nearest Neighbor Index for Baltimore County Residential 
Burglaries 

 
 The nearest neighbor index and test can be very useful for understanding the degree of 
clustering of crime incidents in spite of its limitations.  For example, in Baltimore County, the 
distribution of 6051 residential burglaries in 1996 yields the following nearest neighbor statistics 
(Table 6.2). 
 
 The distribution of residential burglaries is also highly significant.  Now, suppose we 
want to compare the distribution of street robberies (table 6.1) with that of residential burglaries 

                                                 
2  Unfortunately, the term order when used in the context of nearest neighbor analysis has a slightly different 

meaning than when used as first-order compared to second-order statistics.  In the nearest neighbor 
context, order really means neighbor whereas in the type of statistics context, order means the scale of the 
statistics, global or local.  The use of the terms is historical 
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(table 6.2).  The significance test is not very useful for the comparison because the sample sizes 
are so large (1181 v. 6051); the much higher Z-value for residential burglaries indicates  
primarily that there was a larger sample size to test it.   
 

Table 6.2: 

Nearest Neighbor Statistics for 
1996 Residential Burglaries in Baltimore County 

(N=6051) 
 

 Mean nearest neighbor distance: 0.07134 mi 
 Mean random distance based  
   on user input area: 0.16761 mi 

 Nearest neighbor index: 0.4256 
 Standard error: 0.00113 mi 

 Test Statistic (Z): -85.4750 
 p-value (one tail) ≤.0001 
 p-value (two tail) ≤.0001 

 
 However, comparing the relative nearest neighbor indices can be meaningful, 
 

݊݋ݏ݅ݎܽ݌݉݋ܥ	ܰܰ	݁ݒ݅ݐ݈ܴܽ݁  ൌ ேேூಲ
ேேூಳ

                    (6.6) 

    
where NNI(A) is the nearest neighbor index for one group (A) and NNI(B) is the nearest 
neighbor index for another group (B).  Thus, comparing street robberies with residential 
burglaries, we have: 
 

 
ேேூಲ
ேேூಳ

ൌ ேேூೝ೚್್೐ೝ೔೐ೞ
ேேூ್ೠೝ೒೗ೌೝ೔೐ೞ

ൌ ଴.ଷଶଷ଺

଴.ସଶହ଺
ൌ 0.7603                   (6.7) 

 
 In other words, the distribution of street robberies relative to an expected random 
distribution appears to be more concentrated than that of burglaries.  There is not a simple 
significance test of this comparison since the standard error of the joint distributions is not 
known.3  But the relatively greater concentration of robberies suggests that they are more likely 
to have ‘hot spots’.   

                                                 
3  It could be tested with a Monte Carlo simulation. Two separate random samples of 1181 ‘robberies’ and 

6051 ‘burglaries’ would be drawn. The nearest neighbor distance for each sample would be calculated and 
the ratio of the two would be taken.  The simulation would be repeated many times (e.g., 1000) to yield an 
approximate 95% credible interval.  However, we have not implemented this simulation at this point. 
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 This index, of course, does not prove that there are ‘hot spots’, but only points us towards 
the higher concentration of robberies relative to burglaries.  In the previous chapter, it was shown 
that robberies had a smaller dispersion than burglaries.  Here, however, the analysis is taken a 
step further to suggest that robberies are more concentrated than burglaries. 
 
 Use of Network Distance 
 
 In calculating the nearest neighbor index, network distance can be used to calculate the 
distance between points (see chapter 3).  However, unless the data set is very small or you have a 
lot of patience, I highly recommend that you do not do this.  Network calculations are very slow 
and will take a long time to complete for a large file. 
 

K-Order Nearest Neighbor 
 
 As mentioned above, the nearest neighbor index is only an indicator of first-order spatial 
randomness.  It compares the average distance for the nearest neighbor to an expected random 
distance.  But what about calculating the second nearest neighbor, or the third nearest neighbor, 
or the 10th nearest neighbor?  CrimeStat can construct K-order nearest neighbor indices.  On the 
distance analysis page, the user specifies the number of nearest neighbor indices to be calculated.  
 
 The K-order nearest neighbor routine returns four columns: 
 

5. The order, starting from 1 
6. The mean nearest neighbor distance for each order (in meters) 
7. The expected nearest neighbor distance for each order (in meters) 
8. The nearest neighbor index for each order 

 
 For each order, CrimeStat calculates the Kth nearest neighbor distance for each 
observation and then takes the average.  The expected nearest neighbor distance for each order is 
calculated by: 
 

 ݀௄ሺ௥௔௡ሻ ൌ
௄ሺଶ௄ሻ!

ሺଶ಼௄!ሻమටಿ
ಲ

                 (6.8) 

 
where K is the order and ! is the factorial operation (e.g., 4! = 4 x 3 x 2 x 1; Thompson, 1956).  
The Kth nearest neighbor index is the ratio of the observed Kth nearest neighbor distance to the 
Kth mean random distance.   There is not a good significance test for the Kth nearest neighbor  
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index due to the non-independence of the different orders, though there have been attempts (see 
examples in Getis and Boots, 1978; Aplin, 1983).  Consequently, CrimeStat does not provide a 
test of significance.   
 
 There are no restrictions on the number of nearest neighbors that can be calculated.  
However, since the average distance increases with higher-order nearest neighbors, the potential 
for bias from edge effects will also increase.  It is suggested that not more than 100 nearest 
neighbors be calculated.4 
 
 Nevertheless, the K-order nearest neighbor distance and index can be useful for 
understanding the overall spatial distributions.  Figure 6.2 compares the K-order nearest neighbor 
index for street robberies with that of residential burglaries.  The output was saved as a ‘.dbf’ and 
was then imported into a graphics program.  The graph shows the nearest neighbor indices for 
both robberies and burglaries up to the 50th order (i.e., the 50th nearest neighbor).  The nearest 
neighbor index is scaled from 0 (extreme clustering) up to 1 (extreme dispersion).  Since a 
nearest neighbor index of 1 is expected under randomness, the thin straight line at 1.0 indicates 
the expected K-order index.  As can be seen, both street robberies and residential burglaries are 
much more concentrated than K-order spatial randomness.  Further, robberies are more 
concentrated than even burglaries for each of the 50 nearest neighbors.  Thus, the graph 
reinforces the analysis above that robberies are more concentrated than burglaries, and both are 
more concentrated than a random distribution.  
 
 In other words, even though there is not a good significance test for the K-order nearest 
neighbor index, a graph of the K-order indices (or the K-order distances) can give a picture of 
how clustered the distribution is as well as allow comparisons in clustering between the different 
types of crimes (or the same crime at two different time periods). 
 
  Graphing the K-order Nearest Neighbor 
 
 On the output page, there is a quick graph function that displays a curve similar to figure 
6.2.  This is useful for quickly examining the trends.  However, a better graph is made by 
importing the ‘dbf’ file output into a spreadsheet or graphics program. 
 
 

                                                 
4  There is not a hard-and-fast rule about how many K-order nearest neighbor distances should be calculated.  

Cressie (1991, p. 613) showed that error increases with increasing order and the degree of divergence from 
an edge-corrected measure increases over time.  In a test case of 584 point locations, he showed that even 
after only 25 nearest neighbors, the uncorrected measure yields opposite conclusions about clustering from 
the corrected measures.  So, as a rough rule, orders no greater than 2.5% of the cases should be calculated. 



Figure 6.2:

2.0

K-Order Nearest Neighbor Indices
1996 Street Robberies and Residential Burglaries

1.8

1.6

1.4nd
ex

1.2

1.0

0 8

K-order spatial randomness

t N
ei

gh
bo

r I

0.8

0.6

0.4

Residential burglaries

Street robberies

N
ea

re
st

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
31

33
35

37
39

41
43

45
47

49

0.2

0.0

Order of Nearest Neighbor Index



 

6.11 

 Edge Effects 
 
 It should be noted that there are potential edge effects that can bias the nearest neighbor 
index.  An incident occurring near the border of the study area may actually have its nearest 
neighbor on the other side of the border.  However, since there are usually no data on the 
distribution of incidents outside the study area, the program selects another point within the 
study area as the nearest neighbor of the border point.  Thus, there is the potential for 
exaggerating the nearest neighbor distance, that is, the observed nearest neighbor distance is 
probably greater than what it should be and, therefore, there is an overestimation of the nearest 
neighbor distance. In other words, the incidents are probably more clustered than what has been 
measured (see Cressie, 1991 for details).   In CrimeStat, the Kth-order nearest neighbor can be 
adjusted for boundary (edge) effects. 
 

Nearest Neighbor Edge Corrections 
 
 The default condition is no edge correction.  However, one way that the measured 
distance to the nearest neighbor can be corrected for possible edge effects is to assume for each 
observed point that there is another point just outside the border at the closest distance.  If the 
distance from a point to the border is shorter than to its measured nearest neighbor, then the 
nearer theoretical point is taken as a proxy for the nearest neighbor.  This correction has the 
effect of reducing the average neighbor distance.  Since it assumes that there is always another 
point at the border, it probably underestimates the true nearest neighbor distance.  The true value 
is probably somewhere in between the measured and the assumed nearest neighbor distance. 
 
 CrimeStat has two different edge corrections. Because CrimeStat is not a GIS package, it 
cannot locate the actual border of a study area.  One would need a topological GIS package in 
which the distance from each point to the nearest boundary is calculated.  Instead, there are two 
different geometric models that can be applied.  The first assumes that the study area is a 
rectangle while the second assumes that the study area is a circle.  Depending on the shape of the 
actual study area, one or either of these models may be appropriate. 
 

Rectangular study area 
 
 In the rectangular adjustment, the area of the study area, A, is first calculated, either from 
the user input on the measurement parameters tab or from the maximum bounding rectangle 
defined by the minimum and maximum X/Y values (see chapter 3).  If the user provides an 
estimate of the area, the rectangle is proportionately re-scaled so that the area of the rectangle 
equals A.   
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 Second, for each point, the distance to the nearest other point is calculated.  This is the 
observed nearest neighbor distance for point i. 
 
 Third, the minimum distance to the nearest edge of the rectangle is calculated and is 
compared to the observed nearest neighbor distance for point i.  If the observed nearest neighbor 
distance for point i is equal to or less than the distance to the nearest border, it is retained.  On 
the other hand, if the observed nearest neighbor distance for point i is greater than the distance to 
the nearest border, the distance to the border is used as a proxy for the nearest neighbor distance 
of point i. 
 

Circular study area 
 
 In the circular adjustment, first, the area of the study area is calculated, either from the 
user input on the measurement parameters tab (see chapter 3) or from the maximum bounding 
rectangle defined by the minimum and maximum X/Y values.  If the user has specified a study 
area on the measurement parameters page, then that value is taken for A and the radius of the 
circle is calculated by 
 
 R   =  SQRT [A / π ]                      (6.9) 
 
 If the user has not specified a study area on the measurement parameters page, then A is 
calculated from the minimum and maximum X and Y coordinates (the bounding rectangle) and 
the radius of the circle is calculated with equation 6.9. 
 
 Second, for each point, the distance to the nearest other point is calculated.  This is the 
observed nearest neighbor distance for point i.  Third, for each point, i, the distance from that 
point to the mean center is calculated, Ri.  Fourth, the minimum distance to the nearest edge of 
the circle is calculated using 
 
 RiC  =   R - Ri                   (6.10) 
 
 Fifth, for each point, i, the observed minimum distance is compared to the nearest edge of 
the circle, RiC.  If the observed nearest neighbor distance for point i is equal to or less than the 
distance to the nearest edge, it is retained.  On the other hand, if the observed nearest neighbor 
distance for point i is greater than the distance to the nearest edge, the distance to the border is 
used as a proxy for the true nearest neighbor distance of point i. 
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For either correction 
 
 The average nearest neighbor distance is calculated and compared to the theoretical 
average nearest neighbor distance under random conditions.  The indices and tests are as before 
(see chapter 4).  Figure 6.3 below shows a graph of the K-order nearest neighbor index for the 50 
nearest neighbors for 1996 motor vehicle thefts in police Precinct 11 of Baltimore County.  The 
uncorrected nearest neighbor indices are compared with those corrected by a rectangle and a 
circle.  As can be seen, both corrections are very similar to the uncorrected.  However, they both 
show greater concentrations than the uncorrected index.  The rectangular correction shows 
greater concentration than the circular because it is less compact (i.e., the average distance from 
the center of the geometric object to the border is slightly larger).  In general, the rectangle will 
lead to more correction than the circle since it substitutes a greater nearest neighbor distance, on 
average, for a point nearer the border than to its measured nearest neighbor. 
 
 The user has to decide whether either of these corrections is meaningful or not.  
Depending on the shape of the study area, either correction may or may not be appropriate.  If 
the study area is relatively rectangular, then the rectangular model may provide a good 
approximation.  Similarly, if the study area is compact (circular), then the circular model may 
provide a good approximation.  On the other hand, if the study area is of irregular shape, then 
either or both of these corrections may produce more distortion than the raw nearest neighbor 
index.  One has to use these corrections with judgment.   Also, in some cases, it may not make 
any sense to correct the measured nearest neighbor distances.  In Honolulu, for example, one 
would not correct the measured nearest neighbor distances because there are no incidents outside 
the island’s boundary. 
 

Linear Nearest Neighbor Index 
 
 The linear nearest neighbor index is a variation on the nearest neighbor routine, but one 
applied to a street network.  All distances along this network are assumed to travel along a grid, 
hence indirect distances are used.  Whereas the nearest neighbor routine calculates the distance 
between each point and its nearest neighbor using direct distances, the linear nearest neighbor 
routine uses indirect (‘Manhattan’) distances (see chapter 3).  Similarly, whereas the nearest 
neighbor routine calculates the expected distance between neighbors in a random distribution of 
N points using the geographical area of the study region, the linear nearest neighbor routine uses 
the total length of the street network. 
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 The theory of linear nearest neighbors comes from Hammond and McCullagh (1978).   
The observed linear nearest neighbor distance, Ld(NN), is calculated by CrimeStat as the average 
of indirect distances between each point and its nearest neighbor.  The expected linear nearest 
neighbor distance is given by: 
 

ௗሺ௥௔௡ሻܮ  ൌ 0.5 ௅

ேିଵ
           (6.11) 

 
where L is the total length of street network and N is the sample size (Hammond and McCullagh, 
1978, 279).  Consequently, the linear nearest neighbor index is defined as: 
 

ܫܰܰܮ  ൌ
௅೏ሺಿಿሻ
௅೏ሺೝೌ೙ሻ

           (6.12) 

       
 Testing the Significance of the Linear Nearest Neighbor Index 
 
 Since the theoretical standard error for the random linear nearest neighbor distance is not 
known, the author has constructed an approximate standard deviation for the observed linear 
nearest neighbor distance: 
 

௅ௗሺேேሻݏ  ≅ ට∑ ∑ ሾெ௜௡൫ௗ೔ೕ൯ି௅ௗሺேேሻሿమ
ಿషభ
ೕసభ

ಿ
೔సభ

ேିଵ
        (6.13) 

 
where Min(dij) is the nearest neighbor distance for point i and Ld(NN) is the average linear nearest 
neighbor distance.  This is the standard deviation of the linear nearest neighbor distances.  The 
standard error is calculated by: 
 

௅೏ሺಿಿሻܧܵ  ൌ
௦ಽ೏ሺಿಿሻ

√ே
           (6.14) 

 
 An approximate significance test can be obtained by: 
 

ݐ  ൌ
௅೏ሺಿಿሻି௅೏ሺೝೌ೙ሻ

ௌாಽ೏ሺಿಿሻ
           (6.15) 

 
where Ld(NN) is the average linear nearest neighbor distance, Ld(ran) is the expected linear nearest 
neighbor distance (equation 6.11), and ܵܧ௅೏ሺಿಿሻis the approximate standard error of the linear 

nearest neighbor distance (equation 6.14).  Since the empirical standard deviation of the linear 
nearest neighbor is being used instead of a theoretical value, the test is a “t” rather than a Z-test. 
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 Calculating the Statistics 
 
 On the measurements parameters page, there are two parameters that are input, the 
geographical area of the study region and the length of street network.  At the bottom of the 
page, the user must select which type of distance measurement to use, direct, indirect or network.  
If the measurement type is direct or network, then the nearest neighbor routine returns the 
standard nearest neighbor analysis (sometimes called areal nearest neighbor).  On the other 
hand, if the measurement type is indirect, then the routine returns the linear nearest neighbor 
analysis.  To calculate the linear nearest neighbor index, therefore, distance measurement must 
be specified as indirect and the length of the street network must be defined. 
 
 Once nearest neighbor analysis has been selected, the user clicks on Compute to run the 
routine.  The Lnna routine outputs 10 statistics:  
 

1. The sample size 
2. The mean linear nearest neighbor distance  
3. The minimum linear distance between nearest neighbors  
4. The maximum linear distance between nearest neighbors 
5. The mean linear random distance  
6. The linear nearest neighbor index  
7. The standard deviation of the linear nearest neighbor distance  
8. The standard error of the linear nearest neighbor distance 
9. A significance test of the nearest neighbor index (t-test) 
10. The p-values associated with a one tail and two tail significance test. 

  
 Example 3: Auto Thefts Along Two Baltimore County Highways 
 
 The linear nearest neighbor index is useful for analyzing the distribution of crime 
incidents along particular streets.  For example, in Baltimore County, state highway 26 in the 
western part and state highway 150 in the eastern part have high concentrations of motor vehicle 
thefts (figure 6.4).  In 1996, there were 87 vehicle thefts on highway 26 and 47 on highway 150.  
A GIS can be used with the linear nearest neighbor index to indicate whether these incidents are 
greater than what would be expected on the basis of chance.   
 
 Table 6.3 presents the data. Using the GIS, we estimate that there are 3,333.54 miles of 
roadway segments; this number was estimated by adding up the total length of the street network 
in the GIS.  Of all the road segments in Baltimore County, there are 241.04 miles of major 
arterial roads of which state highway 26 has a total length of 10.42 miles and state highway 150 
has a total road length of 7.79 miles.   



Figure 6.4:
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Table 6.3: 

Comparison of 1996 Baltimore County Vehicle Thefts 
for Different Types of Roads 

(N = 3774 Incidents) 
 
 Length of Road Segments: 
 

Highway 26        10.42 mi 
Highway 150          7.79 mi 
All Major 
Arterials    241.04 mi 
All  
Roads    3333.54 mi 

    
Random Expected  
Distance  
Between Incidents:  0.44 miles 

 
 

Proportional To Network  Proportional to Same Road 
            “Relative 
          Average to itself” 
      “Relative Average Random   
      to random” Linear  Linear  Linear 
Where  Number Expected   Nearest Nearest Nearest 
Incidents of  Number Ratio of Neighbor Neighbor Neighbor 
Occurred Incidents if Random Frequency Distance Distance Index 
 
Highway 26    87  11.8  7.4  0.05 mi 0.06  0.96 
 
Highway 150    47    8.8  5.3  0.08 mi 0.08  0.94 
 
All major 
  highways 607  272.8  2.2  0.13 mi 0.20  0.64 
            (p≤.001) 
 
All roads 3,774  3,774.0 1.0  0.09 mi 0.44  0.21 
            (p≤.001) 
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 The analysis is done proportional to the road network (i.e., all roads) and proportional to 
the same road.  In 1996, there were 3,774 motor vehicle thefts in the county.  If these thefts were 
distributed randomly, then the random expected distance between incidents would be 0.44 miles 
(equation 6.11).  Using this estimate, Table 6.3 shows the number of incidents that would be 
expected on each of the two state highways if the distribution were random and the ratio of the 
actual number of motor vehicle thefts to the expected number.  As can be seen, the distribution 
of motor vehicle thefts is not random.  On all major highways, there are 2.2 times as many thefts 
as would be expected by a random spatial distribution.   
 
 In fact, in 1996, of 28,551 road segments in Baltimore County, only 7791 (27%) had one 
or more motor vehicle thefts occur on them; most of these are major roads.  Further, on Highway 
26 there were 7.4 times as much and on Highway 150 there were 5.3 times as much as would be 
expected if the distribution was random.  Thus, relative to the entire network, these two 
highways had more than their share of auto thefts in 1996.   
 
 But what about the distribution of the incidents along each of these highways?  If there 
was a spatial pattern to the incidents, such as clustering on the western edge or in the center, then 
police could use that information to more efficiently deploy vehicles to respond quickly to 
events.  On the other hand, if the distribution along these highways were no different than a 
random distribution, then police vehicles must be positioned in the middle, since that would 
minimize the distance to all occurring incidents. 
 
 Unfortunately, the results appear to be close to a random distribution. CrimeStat 
calculated that for Highway 26, the average linear nearest neighbor distance was 0.05 miles 
which was close to the average random linear nearest neighbor distance (0.06 miles).  The ratio - 
the linear nearest neighbor index, is 0.96 with a t-value of -0.16, which is not significantly 
different from chance.   
 
 Similarly, for Highway 150, the average linear nearest neighbor distance was 0.079 miles 
which, again, was almost identical to the average random linear nearest neighbor distance (0.084 
miles); the nearest neighbor index was 0.94 and the t-value was -0.41 (not significant).  In short, 
even though there was a higher concentration of vehicle thefts on these two state highways than 
would be expected on the basis of chance, the distribution along each highway is not very 
different than what would be expected on the basis of chance.5 

                                                 
5  Because CrimeStat uses indirect distance for the linear nearest neighbor index (i.e. measurement only in an 

horizontal or vertical direction), there is a slight distortion that can occur if the incidents are distributed in a 
diagonal manner, such as with State Highways 26 and 150 in Figure 6.4.  The distortion is very small, 
however.  For example, with the incidents along State Highway 26, after rotating the incident points so that 
they fell approximately in a horizontal orientation, the observed average linear nearest neighbor distance 
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 On the other hand, the distribution of vehicle thefts along all major highways was not 
random in 1996 nor was the distribution of vehicle thefts along all roads.  For those two high 
volume highways, however, unfortunately, the distribution of auto thefts was random and the 
clustering that is evident on all highways and all roads is apparently occurring at other locations. 
Not every test shows clustering and an analyst should be able to recognize a distribution that is 
no different than random. 
 

Linear K-Order Nearest Neighbor 
 
 In CrimeStat, There is also a K-order linear nearest neighbor analysis, as with the areal 
nearest neighbors.  The user can specify how many additional nearest neighbors are to be 
calculated.  The linear K-order nearest neighbor routine returns four columns: 
 

1. The order, starting from 1 
2. The mean linear nearest neighbor distance for each order (in meters) 
3. The expected linear nearest neighbor distance for each order (in meters) 
4. The linear nearest neighbor index for each order 

 
 Since the expected linear nearest neighbor distance has not been worked out for orders  
higher than one, the calculation produced here is a rough approximation.  It applies equation 6.11 
only adjusting for the decreasing sample size, Nk, which occurs as degrees of freedom are lost for 
each successive order.  In this sense, the index is really the k-order linear nearest neighbor 
distance relative to the expected linear neighbor distance for the first order.  It is not a strict 
nearest neighbor index for orders above one. 
 
 Nevertheless, like the areal k-order nearest neighbor index, the k-order linear nearest 
neighbor index can provide insights into the distribution of the points, even if the first-order is 
random.  Figure 6.5 shows a graph of 50 linear nearest neighbors for 1996 residential burglaries 
and street robberies for Baltimore County.  As with the areal k-order nearest neighbors (see 
figure 6.3) both burglaries and robberies show evidence of clustering.  For both, the first nearest 
neighbors are closer together than a random distribution.  Similarly, over the 50 orders, street 

                                                                                                                                                             
decreased slightly from 0.05843 miles to 0.05061 miles and the linear nearest neighbor index became 
0.8354 (t=-.91; n.s.).  In other words, the effects of the diagonal distribution lengthened the estimate for the 
average linear nearest neighbor distance by about 41 feet compared to the actual distances between 
incidents.  For a very small sample, this could be a major source of error, but will be negligible for a lare 
sample.  However, if a more precise measure is required, then the user should rotate the distribution so that 
the incidents have a horizontal or vertical orientation as closely as possible. An alternative is to calculate 
the regular nearest neighbor distance but use a network for distance calculations (see chapter 3). 

 



Figure 6 5:

K-Order Linear Nearest Neighbor Indices
1996 Street Robberies and Residential Burglaries
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robberies are more clustered than burglaries.  However, measuring distance on a grid shows that 
for burglaries, there is only a small amount of clustering.  After the fourth order neighbor, the 
distribution for burglaries is more dispersed than a random distribution.  An interpretation of this 
is that there are small number of burglaries which are clustered, but the clusters are relatively 
dispersed.  Street robberies, on the other hand, are highly clustered, up to over 30 nearest 
neighbors. 
 
 The linear k-order nearest neighbor distribution gives a slightly different perspective on 
the distribution than the area.  For one thing, the index is slightly biased as the denominator - the 
K-order expected linear neighbor distance, is only approximated.  For another thing, the index 
measures distance as if the street follow a true grid, oriented in an east-west and north-south 
direction.  In this sense, it may be unrealistic for many places, especially if streets traverse in 
diagonal patterns; in these cases, the use of indirect distance measurement will produce greater 
distances than what actually occur on the network.  Still, the linear nearest neighbor index is an 
attempt to approximate travel along the street network.  To the extent that a particular 
jurisdiction’s street pattern falls in this manner, it can provide useful information. 

 
 Graphing the Linear K-order Nearest Neighbor 
 
 On the output page, there is a quick graph function that displays a curve similar to figure 
6.5 below.  This is useful for quickly examining the trends.   
 

Ripley’s K Statistic   
 
 Ripley’s K statistic is an index of non-randomness for different scale values (Ripley, 
1976; Ripley, 1981; Bailey and Gattrell, 1995; Venables and Ripley, 1997).  In this sense, it is a 
‘super-order’ nearest neighbor statistic, providing a test of randomness for every distance from 
the smallest up to some specified limit. It is sometimes called the reduced second moment 
measure, implying that it is designed to measure second-order trends (i.e., local clustering as 
opposed to a general pattern over the region).  However, it is also subject to first-order effects so 
that it is not strictly a second-order measure.  
 
 Consider a spatially random distribution of N points.  If circles of radius, ts, are drawn 
around each point, where s is the order of radii from the smallest to the largest, and the number 
of other points that are found within the circles are counted and then summed over all points 
(allowing for duplication), then the expected number of points under complete spatial 
randomness (csr) within that radius are: 
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ூௗ೔ܧ  ൌ
ே

஺
௦ሻݐሺܭ ൌ

గ௧ೞమ

஺
ܰ          (6.16) 

 
where N is the sample size, A is the total study area, and  K(ts) is the area of a circle defined by 
radius, ts.  For example, if the cumulative area defined by a particular radius is one-fourth the 
total study area and if there is a spatially random distribution, on average approximately one-
fourth of the cases will fall within one or more circles. Notice that individual points can be 
counted in multiple circles but the total number of points counted (excluding duplicates) is 
proportional to the cumulative area of the circle relative to the total area. 
 
 On the other hand, if the total number of points found within the circles for a particular 
radius placed over each point, in turn, is greater than that found in equation 6.16, this points to 
clustering, that is points are, on average, closer than would be expected on the basis of chance for 
that radius.  Conversely, if the total number of points found within the circles for a particular 
radius placed over each point is, in turn, less than that found in equation 6.16, then this points to 
dispersion; that is points are, on average, farther apart than would be expected on the basis of 
chance for that radius.  By counting the total number within a particular radius and comparing it 
to the number expected on the basis of complete spatial randomness, the statistic is an indicator 
of non-randomness.  
 
 In this sense, the K statistic is similar to the nearest neighbor distance in that it provides 
information about the average distance between points.  However, it is more comprehensive than 
the nearest neighbor statistic for two reasons.  First, it applies to all orders cumulatively, not just 
a single order.  Second, it applies to all distances up to the limit of the study area because the 
count is conducted over successively increasing radii. 
 
 Under unconstrained conditions, K is defined as: 
 

௦ሻݐሺܭ  ൌ
஺

ேమ
∑ ∑ ௜௝ሻݐሺܫ

ேିଵ
௜ஷ௝

ே
௜ୀଵ           (6.17) 

 
where I(tij) is the number of other points, j,  found within distance, ts, summed over all points, i.  
That is, a circle of radius, ts, is placed over each point, i.  Then, the number of other points, j, 
within the circle is counted.  The circle is moved to the next i and the process is repeated.  Thus, 
the double summation points to the count of all j’s for each i, over all i’s. Note, the count does 
not include itself, only other points.  
 
 After this process is completed, the radius of the circle is increased, and the entire process 
is repeated.  Typically, the radii of circles are increased in small increments so that there are 100 
intervals by which the statistic can be counted.   



 

6.24 

 One can graph K(ts) against the distance, ts, to reveal whether there is any clustering at 
certain distances or any dispersion at others (if there is clustering at some scales, then there must 
be dispersion at others).  Such a plot is non-linear, however, typically increasing exponentially 
(Kaluzny, Vega, Cardoso, & Shelly, 1998).  Consequently, K(ts) is transformed into a square root 
function, L(ts), to make it more linear.  L(ts) is defined as: 
 

௦ሻݐሺܮ  ൌ ට௄ሺ௧ೞሻ

గ
െ  ௦           (6.19)ݐ

 
 That is, K(ts) is divided by π and then the square root is taken.  Then the distance interval 
(the particular radius), ts, is subtracted from this.6  In practice, only the L statistic is used even 
though the name of the statistic, K, is based on the K derivation.   
 
 Because the L(ts) is a measure of second-order clustering, it is usually analyzed for only a 
short distance.  In CrimeStat, the distance is set at one-third the side of a square defined by the 

area,√
஺

ଷ
, and 100 intervals (radii) are used. Figure 6.6 shows a graph of L(t) against distance for 

1996 robberies in Baltimore County.  As can be seen, L(t) increases up to a distance of about 3 
miles whereupon it decreases again.  A “pure” random distribution, known as complete spatial 
randomness (CSR), is shown as a horizontal line at L=0. 
 
 Comparison to a Spatially Random Distribution 
 
 To understand whether an observed K distribution is different from chance, one typically 
uses a random distribution.  Because the sampling distribution of L(ts) is not known, a simulation 
can be conducted by randomly assigning points to the study area.  Because any one simulation 
might produce a clustered or dispersed pattern strictly by chance, the simulation is repeated 
many times, typically 100 or more.  Then, for each random simulation, the L statistic is 
calculated for each distance interval.  Finally, after all simulations have been conducted, the 
highest and lowest L-values are taken for each distance interval.  This is called an envelope.  
Thus, by comparing the distribution of L to the random envelope, one can assess whether the 
particular observed pattern is likely to be different from chance.7   

                                                 
6  This form of the L(ts) is taken from Cressie (1991).  In Ripley’s original formulation, distance is not 

subtracted from the square root function (Ripley, 1976).  The advantage of the Cressie formulation is that a 
complete random distribution will be a straight line that is parallel to the X-axis. 

 
7  Note that, since there is not a formal test of significance, the comparison with an envelope produced from a 

number of simulations provides only approximate confidence about whether the distribution differs from 
chance or not. 



Figure 6.6:
"K" Statistic For 1996 Robberies

Compared to Random and 2000 Population Distributions
L(t) = Sqrt[K(t)/pi] - t
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 In figure 6.6, the L envelope of random data is much less concentrated than that for 
robberies, indicating that it is highly unlikely the concentration of robberies was due to chance. 
 
 Specifying simulations 
 
 Because simulations can take a long time, particularly if the data sets are large, the 
default number of simulations is 0.  However, a user can conduct simulations by writing a 
positive number in the box (e.g., 10, 100, 300).  If simulations are selected, CrimeStat will 
conduct the number of simulations specified by the user and will calculate the upper and lower 
limits for each distance interval, as well as the 0.5th, 2.5th, 5th, 95th, 97.5th and 99th percentile 
intervals; these latter statistics only make sense if many simulation runs are conducted (e.g. 
1000).  Approximate 95% credible intervals can be estimated by taking the 2.5th and 97.5th 
percentiles while approximate 99% credible intervals can be estimated by taking the 0.5th and 
99.5th percentiles.8 
 
 The way CrimeStat conducts the simulation is as follows.  It takes the maximum 
bounding rectangle of the distribution, that is the rectangle formed by the maximum and 
minimum X and Y coordinates respectively and re-scales this (up or down) until the rectangle 
has an area equal to the study area (defined on the measurement parameters page).  It then 
assigns N points, where N is the same number of points as in the incident distribution, using a 
uniform random number generator to this rectangle and calculates the L statistic.  It then repeats 
the experiment for the number of specified simulations, and calculates the above statistics.   For 
example, with 1181 robberies for 1996, the Ripley’s K function calculates the empirical L 
statistics for 100 distance intervals and compares this to M simulations of 1181 points randomly 
distributed over a rectangle, where M is a user-defined number. 
 
 In practice, the simulation test also has biases associated with edges.  Unlike the 
theoretical L under uniform conditions of complete spatial randomness (i.e., stretching in all 
directions well beyond the study area) where L is a straight horizontal line, the simulated L also 
declines with increasing distance separation between points.  This is a function of the same type 
of edge bias.  
 
 Comparison to Baseline Populations 
 
 For most social distributions, such as crime incidents, randomness is not a very 

                                                 
8  With simulations, statisticians usually refer to their percentiles as credible intervals rather than confidence 

intervals, preferring to leave the latter term to formal statistical tests where the mathematical distribution of 
the standard error is known. 
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meaningful baseline.  Most social characteristics are non-random.  Consequently, to find that the 
amount of clustering that is occurring is greater than what would be expected on the basis of 
chance is not very useful for crime analysts.  However, it is possible to compare the distribution 
of L for crime incidents with the distribution of L for various baseline characteristics, for 
example, for the population distribution or the distribution of employment.  In almost all 
metropolitan areas, population is more concentrated towards the center than at the periphery; the 
drop-off in population density is very sharp as was shown in the last chapter.  All other things 
being equal, one would expect more incidents towards the metropolitan center than at the 
periphery.  Consequently, the average distance between incidents will be shorter in the center 
than farther out.  This is nothing more than a consequence of the distribution of people.  
However, to say something about concentrations of incidents above-and-beyond that expected by 
population requires us to examine the pattern of population as well as of crime incidents. 
 
 Use of Intensity or Weight Variable 
 
 CrimeStat allows the use of intensity and weighting variables in the calculation of the K 
statistic.  The user must define an intensity or a weight variable (or both in special 
circumstances) on the primary file page.  The K routine will then use the intensity (or weight) in 
the calculation of L.  In the current version, if there is an intensity, however, no simulation can 
be run.  The reason is that the sampling distribution of the intensity variable is unknown and it 
would be difficult to find a candidate distribution from which to draw samples.  In a future 
version, we may allow permutation-type simulations whereby the original intensity values are 
maintained but they are randomly re-assigned to the existing X/Y coordinates.  For now, though, 
there is no simulation when there is an intensity variable. 
 
 In Figure 6.6 above, there is an envelope produced from 100 random simulations as well 
as the L distribution from the 2000 population; the latter variable was obtained by taking the 
centroid of traffic analysis zones from the 2000 census and using population as the intensity 
variable. As can be seen, the amount of clustering for robberies is greater than both the random 
envelope as well as the distribution of population.  The robbery function is higher than the 
population function up to about 6 miles.  This indicates that robberies are more concentrated than 
what would be expected from the population distribution for a fairly large area.   
 
 In other words, robberies are more clustered than even what would be expected on the 
basis of the population distribution and this holds for distances up to about 6 miles, whereupon 
the distribution of robberies is indistinguishable from a random distribution.  For larger distance 
separations, the L function has little utility since it is usually used to understand localized spatial 
autocorrelation (Bailey and Gattrell, 1995). 
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 For comparison, figure 6.7 below shows the distribution of 1996 burglaries, again 
compared to a random envelope and the distribution of population.  Burglaries are more 
clustered than population, but less so than for robberies; the L value is higher for robberies than 
for burglaries for near distances but becomes more dispersed at about 3 miles; it is still more 
concentrated than a random distribution, however, as seen by the random envelope..  Thus, the 
distribution of L confirms the result that burglaries tend to be spread over a much larger 
geographical area in smaller clusters than street robberies, which tend to be more concentrated in 
large clusters.  In terms of looking for ‘hot spots’, one would expect to find more with robberies 
than with burglaries. 
  
 Edge Corrections for Ripley’s K 
 
 The L statistic is prone to edge effects just like the nearest neighbor statistic.  That is, for 
points located near the boundary of the study area, the number enumerated by any circle for 
those points will, all other things being equal, necessarily be less than points in the center of the 
study area because points outside the boundary are not counted.  Further, the greater the distance 
between points that are being tested (i.e., the greater the radius of the circle placed over each 
point), the greater the bias.  Thus, a plot of L against distance will show a declining curve as 
distance increases as figures 6.6 and 6.7 show. 
 
 There are various adjustments to the function to help correct the bias.  One is a ‘guard 
rail’ within the study area so that points outside the guard rail, but inside the study area can only 
be counted for points inside the guard rail, but cannot be used for enumerating other points 
within a circle placed over them (that is, they can only be j’s and not i’s, to use the language of 
equation 6.16).  Such an operation, however, requires manually constructing these guard rails 
and enumerating whether each point can be both an enumerator and a recipient or a recipient 
only.  For complex boundaries, such as are found in most police departments, this type of 
operation is extremely tedious and difficult.9  
 
  

                                                 
9  The ‘guard rail’ concept, while frequently used, is a poor methodology because it involves ignoring data 

near the boundary of a study area.  That is, points within the guard rail are only allowed to be selected by 
other points and not, in turn, be allowed to select others.  This has the effect of throwing out data that could 
be very important.  It is analogous to the old, but fortunately now discarded, practice of throwing out 
‘outliers’ in regression analysis because the outliers were somehow seen as ‘not typical’.  The guard rail 
concept is also poor policing practice since incidents occurring near a border may be very important to a 
police department and may require coordination with an adjacent jurisdiction.  In short, use mathematical 
adjustments for edge corrections or, failing that, leave the data as it is. 
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 Similarly, Ripley has proposed a simple weighting to account for the proportion of the 
circle placed over each point that is within the study area (Venables and Ripley, 1997).  Thus, 
equation 6.17 is re-written as: 
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where Wij

-1 is the inverse of the proportion of the circumference of a circle of radius, ts, placed 
over each point that is within the total study area.  Thus, if a point is near the study area border, it 
will receive a greater weight because a smaller proportion of the circle placed over it will be 
within the study area. An alternative weighting scheme can be found in Marcon and Puech 
(2003). 
 
 In CrimeStat, two possible corrections are conducted.  One assumes that the study area is 
a rectangle while the other assumes that it is a circle. 
 

 Rectangular correction 
 
 In the rectangular correction for Ripley’s K, the search circle radius, Rj, is compared to 
the edge of an assumed rectangle with area, A, centered at the mean center.  First, the area to be 
analyzed is defined.  If the user has specified a study area on the measurement parameters page, 
then that value for A is taken.  The maximum bounding rectangle is taken (i.e., rectangle defined 
by the minimum and maximum X/Y values) and proportionately re-scaled so that the area of the 
rectangle is equal to A.  If the user does not specify an area on the measurement parameters page, 
then the bounding rectangle defined by the minimum and maximum X/Y values is taken for A. 
 
 Second, for each point, the minimum distance to the nearest edge of this rectangle is 
calculated in both the horizontal and vertical directions, dminRX and dminRY.  Third, each of the 
minimum distances is compared to the search circle radius, Rj: 
 

1. If  neither the minimum distance in the X-direction, dminRX, nor the minimum 
distance in the Y-direction, dminRY, are less than the search circle radius, Rj, then 
the circle falls entirely within the rectangle and E = 1; 
 

2. If either the minimum distance in the X-direction, dminRX, or the minimum 
distance in the Y-direction, dminRY, but NOT BOTH, are less than the search circle 
radius, Rj, then part of the search circle falls outside the rectangle and an 
adjustment is necessary.  An approximate adjustment is made that is inversely 
proportional to the area of the search circle within the rectangle.  The values of E 
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will vary between 1 and 2 since up to one-half of the search circle could fall 
outside the rectangle; 

 
3. If both the minimum distance in the X-direction, dminRX, and the minimum 

distance in the Y-direction, dminRY, are less than the search circle radius, Rj, then a 
greater adjustment is required since E could vary between 1 and 4 since up to 
three-fourth of the search circle could fall outside the rectangle. 

 
 The formulas used to calculate the rectangular weights are: 
   

Radius does not extend beyond the rectangle 
 

 ௜ܹ௝
ିଵ ൌ ݇ ൌ 1                   (6.21) 

   
Radius extends beyond one edge of the rectangle (but not two) 
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Radius extends beyond two edges of the rectangle 
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 While intuitive, this weight, Wij

-1, is prone to cause upward ‘drift’ in the K function, so a 
log transformation is used: 
 
 W’

ij
-1 = ln(Wij

-1) + 1           (6.24) 
 
 This has the effect of tempering the drift somewhat. 
      

Circular correction 
 
 In the circular correction for Ripley’s K, the search circle radius, Rj, is compared to the 
edge of an assumed circle with area, A, centered at the mean center.  First, the area to be 
analyzed is defined.  If the user has specified a study area on the measurement parameters page, 
then that value for a is taken.  The radius of the circle, Rj, is calculated by equation 6.9 above.  If 
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the user has not specified a study area on the measurement parameters page, then A is calculated 
from the maximum bounding rectangle and the radius of the circle is calculated by equation 6.9 
above. 
 
 Second, for each point, the distance from that point to the mean center, Rj, is calculated.  
The nearest distance from the point to the circle’s edge is given by 
 
 RjC = R  - Rj                   (6.25) 
 
 
 Third, the search circle radius, Rj, is compared to the nearest edge of the circle, RiC, and 
the weight will vary from 1 (point and radius totally within the study area) to 2.3834 (point is 
located exactly on boundary of area circle).  The formulas for the circular correction are: 
 

ߠ  ൌ ݏ݋ܿܿݎܽ ௥
మା௧೎ିோమ

ଶ௥௧೎
           (6.26) 

 
 Wij

-1 = k = π / θ                  (6.27) 
 
where r is the radius of the search circle, R is the radius of the circular study area, and tc is the 
distance from the point to the center of the circular study area. 
 

For either correction 
 
 During the calculation of Ripley’s K, each point is multiplied by the weight and the K 
and L statistics are calculated as before.  The simulation of random point distributions is treated 
in an analogous way.  While intuitive, this weight, Wij

-1, is prone to cause upward ‘drift’ in the K 
function, so a log transformation is used: 
 

  W’
ij

-1 = ln(Wij
-1) + 1           (6.28) 

 
 This has the effect of tempering the drift somewhat.  Figure 6.8 below shows a Ripley’s 
K distribution for 1996 Baltimore County burglaries, with and without edge corrections.  As can 
be seen, the uncorrected L distribution decreases and falls below the theoretical random count 
(complete spatial randomness, L=0) after about 7 miles whereas neither the L distribution with 
the rectangular correction nor the L distribution with the circular distribution do so.  As 
expected, the rectangular distribution produces the most concentration. 
       
 



Figure 6.8:

"K" Statistic For 1996 Burglaries
With Different Types of Corrections

L(t) = Sqrt[K(t)/pi] - t
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 Output Intermediate Results 
 
 There is a box labeled “Output intermediate results”.  If checked, a separate dbf file will 
be output that lists the intermediate calculations.  The file will be called 
“RipleyTempOutput.dbf”.  There are five output fields: 
 

1. The point number (POINT), starting at 0 (for the first point) and proceeding to N–
1 (for the Nth point) 

2. The search radius in meters (SEARCHRADI) 
3. The count of the number of other points that are within the search radius 

(COUNT) 
4. The weight assigned, calculated from equations 6.25 or 6.29 above (WEIGHT) 
5. The count times the weight (CTIMESW) 

 
 This output can be useful for examining the counts for specific points or for trying out 
alternative weighting schemes. 
 

Some Cautions in Using Ripley’s K 
 
 While Ripley’s K is a powerful tool for analyzing spatial autocorrelation (usually 
clustering, rather than dispersion), like any statistic it is prone to biases.  Edge biases have been 
discussed above, but there are others.  First, there is a sample size issue.  The routine calculates 
100 separate L(t) values, one for each distance bin. However, the precision of any one L(t) value 
is dependent on the sample size.  With a small sample, there is insufficient data to estimate 100 
independent values of L(t).  While the Monte Carlo simulation partly can account for that bias, it 
has to be realized that the precision of the interpretation is suspect.  For example, in comparing 
two similar distributions, say robberies and burglaries, unless the sample size is large differences 
for any one bin could easily be due to chance.  One would need a very different type of 
procedure to estimate the ‘standard error’ of two functions with a small sample.  But, I would 
suspect that there would be many bins for which they would be indistinguishable (shown as the 
two functions crisscrossing each other).   
 
 Users should be very cautious in drawing conclusions about differences in the L function 
with small samples.  Even with sample sizes greater than 100, the imprecision of any one L(t) 
value is considerable.  Until the sample sizes get into the hundreds, precision is an issue for 
specific L(t) values. 
 
 A second caution has to do with the scale of the interpretation.  Data sets with strong 
first-order properties (i.e., a high degree of central concentration of incidents) will exert bias on 
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Ripley’s K statistic.  Thus, any data set that is correlated with human populations will most likely 
have a very strong ‘central tendency’.  Thus, there will be a high degree of concentration in the L 
values for even near distances.  This was seen in the robbery and burglary data shown above. 
The K statistic was created to estimate second-order spatial autocorrelation, namely localized 
clustering.  However, if the first-order effect is so dominant, then it is hard to disentangle it from 
a second-order effect. In other words, it is often not clear whether the clustering that is observed 
in Ripley K is due to primary, first-order clustering or actual localized, second-order clustering.  
That is why it is generally wise to use the K statistic for short distance ranges and not for larger 
distance separations.  For larger distance separations, it is almost impossible to tell whether the 
effect is due to the large central concentration of the population or whether there are interactions 
between neighborhoods at a large scale.   
 
 There are different ways to handle to problem, none of which are perfect.  For example, 
one can estimate a first-order concentration effect and then apply Ripley’s K to the residuals. 
Alternatively, one can use a baseline population to calculate a rate and test for concentration only 
in the rates, not the volumes of incidents. In chapters 7 and 9, there will be a discussion of using 
a baseline population to control for first-order effects.  But, whether this is done or not, the user 
should be aware of the interaction between first-order and second-order (or localized) effects. 
 
 The third caution has to do with the shape of the boundaries in interpreting the K statistic.  
This is particularly true when an edge correction is applied.  Unless the study area was an actual 
rectangle, the correction may alter the interpretation compared to the uncorrected L.  There are 
some subtle differences between the two, however, so some care should be used.  The empirical 
L is obtained from the points within the study area, the geography of which is usually irregular.  
The random L, however, is calculated from a rectangle or a circle.  Thus, the differences in the 
shape comparisons may account for some variations. 
 
 The realism of the corrected function depends on the validity of the underlying 
assumptions.  If it is likely that there are points outside the study area, then a weighting may 
produce a more realistic interpretation of the L function.  On the other hand, if the density of the 
points outside the study area is lower (e.g., if the study area is a metropolitan area, then the area 
outside is more likely to be suburban or rural and of low population density), then the weighting 
will exaggerate the function relative to what it should be.  In the extreme case, if the study area is 
an island (e.g., Honolulu), then there are no points outside the study area and no weighting is 
justified.  Even when weighting would be justified, the actual boundary is probably not a 
rectangle or a square so that the geometric correction above may distort the L function, too.  In 
short, some understanding of the basis for weighting is necessary to produce a reasonable L 
function. 
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Assign Primary Points to Secondary Points 
 
 This routine will assign each primary point to a secondary point and then will sum by the 
number of primary points assigned to each secondary point. The routine is useful for 
summarizing data.  For example, if the primary file represents the number of robberies and the 
secondary file represents the centroids of census tracts, then the routine will assign all robberies 
to a census tract and will then sum the number of robberies in each census tract.  The result is a 
count of the number of primary points for each secondary point (zone).  Other examples might 
be to assign students to the nearest school or to assign patients to the nearest hospital.  There are 
many uses for summarizing data by another data reference.  In the Trip Generation module 
(under Crime Travel Demand - see Chapter 27), a model is developed for the number of crimes 
originating in each zone and a separate model for the number of crimes ending in each zone.  
The “Assign primary points to secondary points” routine is a good way to summarize the number 
of crimes by zones. 
 
 There are two methods for assigning the primary points to the secondary. 

 
 Nearest Neighbor Assignment 
 
 This routine assigns each primary point to the secondary point to which it is closest.  It 
goes through all the primary points and sums the number assigned to each secondary point.  
Thus, the logical operation is ‘nearest to’.  If there are two or more secondary points that are 
exactly equal, the assignment goes to the first one on the list. 
 
 Point-in-polygon Assignment 
 
 This routine assigns each primary point to the secondary point for which it falls within its 
polygon (zone).  The point-in-polygon assignment reads a zonal boundary file (in ArcGIS ‘shp’ 
file format) and determines which zone each primary point falls within.  In this case, the logical 
operation is ‘belongs to’.  A zone (polygon) shape file must be provided and the routine checks 
which secondary zone each primary point falls within. 
 
 Most GIS packages can do a point-in-polygon operation but few allow a nearest neighbor 
assignment.  In general, the two are similar though there will be differences due to the irregular 
shape of zone boundaries.  For example, figure 6.9 below shows an incident that is within Traffic 
Analysis Zone (TAZ) 0546, but is actually closer to the centroid of TAZ 0547.  The 
characteristics associated with this incident are more likely to be associated with the 
characteristics of the second zone than the zone to which it belongs.  The decision on which 
criteria to use in assigning the incident to a zone depends on how integral is the zone to which it  



Figure 6.9:
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belongs.  If the zones are bounded by major arterials, then travel behavior within the zone will be 
defined by those arterials; in this case, it would probably be prudent to use the point-in-polygon 
assignment.  On the other hand, if the zone boundaries are not a fundamental separation, then the 
nearest neighbor assignment would probably produce a better fit to the incident since the 
characteristics of the closer zone are liable to hold for the incident.  In short, the user must decide 
on which theoretical basis to assign points. 
 
  Zone file 
 
 If the point-in- polygon method is used, an ArcGIS zonal shape file must be defined 
under the routine.  This is a polygon file that defines the zones to which the primary points are 
assigned. The zonal shape file correspond to secondary file (see Secondary file), but will be the 
full shape file as opposed to the ‘dbf’ portion of the file.  For each point in the primary file, the 
routine identifies which polygon (zone) it belongs to and then sums the number of points per 
polygon.  
 
 On the other hand, if the nearest neighbor method is used, then only the secondary file 
need be defined. 
 
  Name of assigned variable 
 
 Specify the name of the summed variable.  The default name is FREQ.   
 
 Use Weighting File 
 
 The primary file records can be weighted by another file.  This would be useful for 
correcting the totals from the primary file.  For example, if the primary file were robbery 
incidents from an arrest record, the sum of this variable (i.e. the total number of robberies) may 
produce a biased distribution over the secondary file zones because the primary file was not a 
random sample of all incidents (e.g., if it came from an arrest record where the distribution of 
robbery arrests is not the same as the distribution of all robbery incidents).   
 
 The secondary file or another file can be used to adjust the summed total.  The weighting 
variable should have a field that identifies the ratio of the true to the measured count for each 
zone.  A value of 1 indicates that the summed value for a zone is equal to the true value; hence 
no adjustment is needed.  A value greater than 1 indicates that the summed value needs to be 
adjusted upward to equal the true value.  A value less than 1 indicates that the summed value 
needs to be adjusted downward to equal the true value. 
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 If another file is to be used for weighting, indicate whether it is the secondary file or, if 
another file, the name of the other file. 
 
  Name of assigned weighted variable 
 
 For a weighted sum, specify the name of the variable.  The default will be ADJFREQ.   
 
 Save Result 
 
 For both routines, the output is a 'dbf' file. Define the file name.  Note: be careful about 
using the same name as the secondary file as the saved file will have the new variable.  It is best 
to give it a new name. 
 
 A new variable will be added to this file that gives the number of primary points in each 
secondary file zone and, if weighting is used, a secondary variable will be added which has the 
adjusted frequency. 
 

Example: Assigning Robberies to Zones 
 
 To illustrate the routine, table 6.4 shows the results of summarizing 1,181 robberies that 
occurred in 1997 in 325 Baltimore County Traffic Analysis Zones.  The two methods are 
compared.  Only the first 30 assignments are shown.  In general, they give similar results. 
However, there are differences due to the method.  One is that the nearest neighbor method will 
assign points on the basis of proximity while the point-in-polygon method will not.  In the case 
of the Baltimore County robberies, some of these were assigned to a City of Baltimore TAZ 
because those TAZ’s were closer, rather than to a Baltimore County TAZ.  Another is that if a 
zone is very irregular, points may be assigned to it under the point-in-polygon method which 
may be quite far away. 
 
 Thus, the user has to decide which method makes the most sense.  If the purpose is to 
assign incidents to the zone which it is most likely to be related, for example, when developing a 
data set for zonal modeling (see Chapter 26), then the nearest neighbor method may produce a 
better representation.  The incidents are then assigned to a zone which has characteristics that 
probably will be related to the factors causing the incidents in the first place.  On the other hand, 
if the object is to assign incidents on the basis of membership (e.g., assigning crimes to police 
precincts), then the point-in-polygon method will be the most accurate. 
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   Table 6.4: 

Assigning Incidents to Zones 
1997 Robberies (N=1181) and Traffic Analysis Zones (M=325) 

 

TAZ Point-in-Polygon Nearest Neighbor
0401 0 0 
0402 0 0 
0403 1 1 
0404 0 0 
0405 0 0 
0406 0 0 
0407 0 0 
0408 0 0 
0409 0 0 
0410 0 0 
0411 0 0 
0412 0 0 
0413 0 0 
0414 1 1 
0415 0 0 
0416 0 0 
0417 0 0 
0418 0 0 
0419 0 0 
0420 0 0 
0421 0 0 
0422 0 1 
0423 0 0 
0424 1 0 
0425 3 0 
0426 2 2 
0427 3 2 
0428 0 0 
0429 5 5 
0430 0 0 
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Distance Analysis II 
 
 The remaining distance analysis routines are on the Distance Analysis II page.  Figure 
6.10 shows the page. 
 

Distance Matrices 
 
 CrimeStat has the capability for outputting distance matrices.  There are four types of 
matrices that can be output.   
 

1. First, the distance between every point in the primary file and every other point 
can be calculated in miles, nautical miles, feet, kilometers or meters.  This is 
called the Within File Point-to-Point matrix (Matrix).   

 
2. Second, if there is also a secondary file, CrimeStat can calculate the distance from 

every point in the primary file to every point in the secondary file, again in miles, 
nautical miles, feet, kilometers or meters.  This is called the From Primary File 
Points to Secondary File Points matrix (Imatrix). 

 
3. Third, if there is a reference file defined, the distance from each primary point to 

each grid cell can be computed.  This is called the From Primary File Points to 
Grid matrix (PGMatrix). 

 
4. Fourth, if there is also a secondary file and a reference file, the distance from each 

secondary point to each grid cell can be computed.  This is called the From 
Secondary File Points to Grid matrix (SGMatrix). 

 
 Each of these types of matrices can be displayed or saved to an Ascii text file for import 
into another program.  Each matrix defines incidents by the order in which they occur in the files 
(i.e., Record number 1 is listed as ‘1'; record number 2 is listed ‘2'; and so forth).  Only a subset 
of each matrix is displayed on the results tab.  However, there are horizontal and vertical slider 
bars that allow the user to scroll through the matrix.  The user should move the vertical slide bar 
first to an approximate proportion of the matrix and click the Go button.  The matrix will scroll 
through the rows of the matrix to a place which represents that proportion indicated in the slide 
bar.  The user can then scroll across the rows with the upper slide bar. 
 
 The matrices can be used for various purposes.  The within file point-to-point matrix can 
be used to examine distances between particular incidents.  The saved Ascii ‘.txt’ matrix can also  



Distance Analysis II Screen
Figure 6.10:
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be imported into a network program for estimating transportation routes. The primary-to-
secondary file matrix can be used in optimization routines, for example in trying to assess 
optimal allocation of police cars in order to minimize response time in a police district.  The 
distances to the grid cells can be used to compare the distances for different distributions to a 
central location (e.g., a police station).  There are many applications where distances are the 
primary unit of analysis.  However, the user will need other software to read the files. 
 
 Be careful in outputting distances, though, because the files will generally be very large. 
For example, a primary file of 1000 incidents when interpolated to 9000 grid cells (100 columns 
x 90 rows) will produce 9 million paired comparisons.  Such a file will take a lot of disk space.  
For that reason, we only allow output to an Ascii text file. 
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Attachments 

 
  



SARS and the Distribution of Passengers on an Airplane  
 

Marta A. Guerra 
Senior Staff Epidemiologist,  

Centers for Disease Control and Prevention 
Atlanta, GA 

 
Illness in passengers on board airplanes occurs rather frequently, and 

investigations are performed to assess whether transmission to other passengers has 
occurred. During 2002, several passengers with Severe Acute Respiratory Syndrome 
(SARS) traveled to the United States by airplane while they were infectious. Since 
transmission of SARS can be airborne, there is concern that it could spread during 
an airline flight. A survey was undertaken on a flight where a confirmed SARS case 
was on board. Serum samples of passengers were taken to evaluate if transmission 
of SARS had occurred during the flight, and whether transmission is related to 
sitting near the SARS case. 
 

The nearest neighbor index was used to compare the distances between the 
seats of passengers on this flight to distances expected on the basis of chance. A grid 
(7 m x 32 m) was superimposed on the airline seat configuration, and each seat was 
assigned an X, Y coordinate based on the width (x) and the length (y) of the airplane.  
In the diagram below, the seat location of the SARS index case is indicated by an X, 
and the passengers’ seat locations are shaded in black. 

 

 
 

Nearest Neighbor Statistics for Airline Flight with SARS Case 
 
 

The nearest neighbor index of passengers’ seats was 0.931 indicating that the 
distribution was random, not clustered. This preliminary analysis was important in 
order to establish that the seating arrangement of the passengers was random and 
independent, and that the passengers’ seats were not clustered around the SARS 
case. Therefore, if any passengers have positive serum samples for SARS, we would 
be able to evaluate their locations in relation to the SARS case and assess patterns 
of transmission. In this survey, however, there was no evidence of transmission 
since none of the passengers had positive serum samples for SARS. 



Nearest Neighbor Analysis 
Man With A Gun Calls 
Charlotte, N.C.:  1989 

 
James L. LeBeau 

Administration of Justice 
Southern Illinois University-Carbondale 

 
A comparison was made of Man with a Gun calls for the weekend in which 

Hurricane Hugo hit the North Carolina coast ( September 22 – 24) with the 
following New Year’s Eve weekend (December 29-31, 1989).  There were 146 Man 
with a Gun calls during the Hurricane Hugo weekend compared to 137 calls for New 
Year’s Eve.  
 

 The Nearest Neighbor Index in CrimeStat was used to compare the 
distributions.  From the onset, the Hurricane Hugo Man With a Gun locations are 
more dispersed than New Year’s Eve.  After the 5th nearest neighbor (Order 5) the 
differences become more pronounced 
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K-Function Analysis to Determine Clustering in the 
Police Confrontations Dataset in 

Buenos Aires Province, Argentina:  1999 
 

Gastón Pezzuchi, Crime Analyst 
Buenos Aires Province Police Force 

Buenos Aires, Argentina 
 

Sometimes crime analysts tend to produce beautiful hot spot maps without 
any formal evidence that clustering is indeed present in the data. One excellent and 
powerful tool that CrimeStat provides is the computation of the K function, which 
summarizes spatial dependence over a wide range of scales, and uses the 
information of all events. 

 
We computed the K function using 1999 police confrontations data (mostly 

shootings) within our study area1 and ran 100 Monte Carlo simulations in order to 
test for spatial randomness2 (see figure below); the K function showed clustering up 
to about 30 Km. Yet, spatial randomness is not a particularly meaningful hypothesis 
to test considering that the “population at risk” are highly clustered. Hence we used 
police deployment data as a base population and calculated the K function for that 
data set. As can seen, the amount of clustering for the confrontation dataset is much 
greater than both the random envelope as well as the distribution of police officers. 
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1 A years worth dataset of events occurring within a 9,500 km2 area around the Federal Capital (29 
counties). 
2 Remember that Pr( L(d) > Lmax) = Pr( L(d) < Lmin) = 1 / (m + 1) where m is the number of 
independent simulations, 


