This article reviews the range of delivery platforms that have been developed for the PySAL open-source Python library for spatial analysis.
This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook), open spatial analytics middleware, and web, cloud and distributed open geospatial analytics for decision support. A common thread throughout the discussion is the emphasis on openness, interoperability, and provenance management in a scientific workflow. The code base of the PySAL library provides the common computing framework underlying all delivery mechanisms. (Publisher abstract provided)
Downloads
Similar Publications
- Prediction of Blood Back Spatter From a Gunshot in Bloodstain Pattern Analysis
- The Effect of Ultraviolet Radiation on Dyed Man-Made Textile Fibers Using UV-Vis Microspectrophotometry (MSP): Technical Aspects on Spectral Alterations in Time
- The Application of Ground-Penetrating Radar for Forensic Grave Detection