Using a previously built model for the identification of body fluids using Raman spectroscopy, this study determined that Raman spectroscopy is sufficiently sensitive to detect a single red blood cell (RCB), which is more sensitive than DNA profiling by several orders of magnitude. Semen stain was identified on glass and blue polyester, using the Raman spectroscopy method. For all analyzed fluids (dry blood, saliva, and semen), the results show that the Raman spectroscopy method is selective and shows no false positives, making it advantageous over current presumptive tests. In addition, Raman spectroscopy combined with advanced statistical analysis showed promise for differentiating groups of donors based on their age; however, further work is needed to complete this part of the study. By significantly increasing the amount of information obtained, while reducing the cost and time of analysis, as well as preserving evidence integrity in a non-destructive confirmatory test, the proposed Raman spectroscopy method is superior to existing procedures for analyzing body fluid traces. Also, the development of portable instrumentation would significantly improve the efficiency of crime-scene investigations. Scholarly products and conference presentations on this project are listed.
Downloads
Similar Publications
- Evidence Management Steering Committee Report: Opportunities to Strengthen Evidence Management Processes
- Assessing Methods to Enhance and Preserve Proteinaceous Impressions from the Skin of Decedents during the Early Stages of Decomposition
- The Development and Use of Computational Tools in Forensic Science